Regioselective Synthesis of Acyclic cis-Enediynes via an Acid-Catalyzed Rearrangement of 1,2-Dialkynylallyl Alcohols. Syntheses, Computational Calculations, and Mechanism ${ }^{\dagger}$

Wei-Min Dai,* J inlong Wu, Kin Chiu Fong, Mavis Yuk Ha Lee, and Chi Wai Lau
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Received December 21, 1998

A novel synthesis of acyclic cis-enediynes $\mathbf{2}$ has been established by an acid-catalyzed rearrangement of 1,2-diyn-2-propen-1-ols 1 possessing a C_{3}-aryl group in the presence of water, alcohols, or thiols. Reactivity of allyl alcohols and regio- and cis/trans diastereoselectivity of the allylic migration were examined. In the presence of (\pm)-10-camphorsulfonic acid (CSA), the parent allyl alcohol 5 and the C_{3}-methyl-substituted 9 failed to give enediynes, whereas the C_{3}-aryl-substituted 12 and 29 underwent the allylic rearrangement to provide predominantly cis-enediynes 16 and 31 at room temperature or below. Under similar acidic conditions, enediyne al cohol $\mathbf{1 3}$ produced 16b and 16d with the same regio- and cis/trans diastereoselectivity observed for $\mathbf{1 2}$. Allyl alcohol 30, an isomer of 29, also provided enediynes 31c and 32c after a prolonged reaction (90 h) at room temperature in the presence of CSA and EtOH. These results suggested that the same allylic cations were obtained from allyl alcohols $\mathbf{1 2}$ and $\mathbf{1 3}$ or $\mathbf{2 9}$ and $\mathbf{3 0}$ even though the ease of ionization differed for each substrate. Involvement of allylic cations in the product-forming step was confirmed by the finding that chiral allyl alcohols (-)-12 and (-)-18c furnished racemic products. In general, the p-MeOPh-substituted allyl alcohol 29 gave a better regioselectivity than the Ph-substituted 12. In the reactions with alcohols, the regioisomeric ratios were 100:0 (31:33) for 29 and ca. $96: 4$ (16:17) for 12; the ratios decreased to ca. 90:10 (31:33) for 29 and ca. 70:30 (16:17) for $\mathbf{1 2}$ when thiols were used. The cis/trans diastereoselectivity is higher for allyl al cohol $\mathbf{1 2}\left(100 \%\right.$ for 16 at $\left.20^{\circ} \mathrm{C}\right)$ compared to that for $29\left(31: 32=80: 20-94: 6\right.$ at $\left.0^{\circ} \mathrm{C}\right)$. Computational calculations at the RHF/3-21G level, carried out on the model compounds and allylic cations, indicated that nucleophilic trapping takes place preferentially at the C_{3} carbon to form the thermodynami cally much more stable enediynes. U nder the best reaction conditions (1 equiv of CSA and 2 equiv of EtOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$), a number of acyclic cis-enediynes can be synthesized in three steps from the commercially available α-bromocinnamaldehyde (10).

Introduction

The naturally occurring enediynes ${ }^{1,2}$ are a novel class of antitumor antibiotics that possess a 1,5-diyn-3-ene core constrained in a 9 - or 10-membered ring. At present, the enediyne anti biotics indude the representative structures of neocarzinostatin chromophore, ${ }^{3}$ calicheamicin $\gamma_{1}{ }^{1,4}$

[^0]esperamicin $\mathrm{A}_{1},{ }^{5}$ namenamicin, ${ }^{6}$ dynemidin $\mathrm{A},{ }^{7}$ kedardidin chromophore, ${ }^{8} \mathrm{C}$-1027 chromophore, ${ }^{9}$ maduropeptin chro-
(3) Structure of neocarzinostatin chromophore, see: Edo, K.; Mizuyaki, M.; K oide, Y.; Seto, H.; Furihata, K.; Otake, N.; Ishida, N. Tetrahedron Lett. 1985, 26, 331.
(4) Structure of calicheamicin $\gamma_{1}{ }^{1}$, see: Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; M orton, G. O.; Borders, D. B. J . Am. Chem. Soc. 1987, 109, 3464. Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Siegel, M. M.; M orton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3466.
(5) Structure of esperamicin A_{1}, see: Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J . Am. Chem. Soc. 1987, 109, 3461. Golik, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkama, H.; Saitoh, K.; Doyle, T. W. J . Am. Chem. Soc. 1987, 109, 3462.
(6) Structure of namenamicin, see: McDonald, L. A.; Capson, T. L.; Krishnamurthy, G.; Ding, W.-D.; Ellestad, G. A.; Bernan, V. S.; Maiese, W. M.; Lassota, P.; Discafani, C.; Kramer, R. A.; Ireland, C. M. J . Am. Chem. Soc. 1996, 118, 10898.
(7) Structure of dynemicin A, see: Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G. D.; Clardy, J . J . Antibiot. 1989, 42, 1449. K onishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G. D.; Clardy, J. J . Am. Chem. Soc. 1990, 112, 3715.
(8) Structure of kedarcidin chromophore, see: Leet, J. E.; Schroeder, D. R.; H ofstead, S. J.; Golik, J.; Colson, K. L.; Huang, S.; Klohr, S. E.; Doyle, T. W.; Matson, J. A. J. Am. Chem. Soc. 1992, 114, 7946. Leet, J. E.; Schroeder, D. R.; Langley, D. R.; Colson, K. L.; Huang, S.; Klohr, S. E.; Lee, M. S.; Golik, J .; Hofstead, S. J .; Doyle, T. W.; Matson, J. A. J. Am. Chem. Soc. 1993, 115, 8432. Revised structure, see: K awata, S.; Ashizawa, S.; Hirama, M. J . Am. Chem. Soc. 1997, 119, 12012.
mophore, ${ }^{10}$ and N1999A2. ${ }^{11}$ Since the pioneer contributions by Bergman, ${ }^{12 a-d}$ Masamune, ${ }^{12 e}$ and Wong, ${ }^{12 f}$ it has been known that the naturally occurring and synthetic enediynes can undergo a thermal cycloaromatization to form 1,4-benzenoid diradical species. The latter causes DNA strand cleavage through abstraction of hydrogen atoms from the sugar-phosphate backbone. ${ }^{1,2,13}$ Syntheses of naturally occurring enediynes and analogues have been the focus of many research efforts in recent years. ${ }^{1 a, g, h, 14}$ In general, enediynes are prepared by a Pd-(0)-Cu(I)-mediated cross-coupling reaction of vinyl dihalides or anal ogues with terminal acetylenes under the Sonogashira conditions ${ }^{15}$ in good to excellent chemical yields. The geometry of enediynes so prepared is determined and predictable by that of the vinyl dihalides or analogues. The most important variation to the Sonogashira procedure is the Stille cross-coupling ${ }^{16}$ of (Z)-1,2bis(trimethylstannyl)ethene with iodoalkynes catalyzed by $\operatorname{Pd}(0)$. The latter method is particularly efficient for construction of cyclic enediynes. ${ }^{17}$ Alternatively, a number of methods have been developed to synthesize cisenediynes by introducing the double bond into 1,5-diyne derivatives. These methods include the reductive elimination, ${ }^{18}$ the acid- ${ }^{19}$ or base-induced ${ }^{20}$ elimination of alcohols, the elimination of diol using the Corey-Winter reagent, ${ }^{21}$ the benzylic oxidation, ${ }^{22}$ the Norrish Type II reaction, ${ }^{23}$ the rearrangement of allyl al cohols, ${ }^{24}$ and the Diels-Alder and retro-Diels-Alder reactions. ${ }^{25}$ In some

[^1]
Scheme 1

$X=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{Ph}, p-\mathrm{MeOPh}$

2
$\mathrm{Y}=\mathrm{OH}, \mathrm{OR}, \mathrm{SR}$
of the above-mentioned preparations, control of the cis/ trans diastereoselectivity in the formation of acyclic enediynes needs further improvement. ${ }^{23}$ Nevertheless, these methods provide the chemical basis for enediyne prodrug ${ }^{26}$ design and synthesis. During our studies on the formation of enediynes via an allylic rearrangement conceptually related to the mechanism of action of maduropeptin chromophore-derived artifacts, ${ }^{10}$ we have been successful in conversion of 1,5-diyne derivatives 1 into cis-enediynes 2 via the corresponding allylic mesylate ${ }^{24 a}$ or the allylic cation intermediate under acidic conditions. ${ }^{24 b, c}$ In this article, we disclose a full account of the acid-catalyzed transformation of $\mathbf{1}$ into $\mathbf{2}$ (Scheme 1) with emphases on the substrate structural requirement and control of the regio- and cis/trans diastereoselectivity.

Results and Discussion

Synthesis of Enediynes. The parent allyl alcohol 5 was prepared from α-bromoacrolein (3) ${ }^{27}$ as illustrated in Scheme 2. Addition of the lithium salt of phenyl propargyl sulfide ${ }^{28}\left(\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{SPh}\right)$ to 3 gave 2-bromoallyl alcohol 4 in 51% yield. Cross-coupling of 4 with 6-methoxy-1-hexyne in the presence of $5 \mathrm{~mol} \%$ of Pd $\left(\mathrm{PPh}_{3}\right)_{4}, 20 \mathrm{~mol}$ \% of Cul , and 2 equiv of $E t_{3} \mathrm{~N}$ in THF ($20^{\circ} \mathrm{C}, 4 \mathrm{~h}$) afforded 1,2-dialkynylallyl alcohol 5 in 95\% yield. Treatment of 5 with 1 equiv of (\pm)-10-camphorsulfonic acid (CSA) and 2 equiv of EtOH in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20^{\circ} \mathrm{C}, 24 \mathrm{~h}$) did not provide the expected product 6a or 6b. The starting material was recovered (80\%). Compound 5 remained unchanged even in the presence of
(20) (a) Audrain, H.; Skrydstrup, T.; Ulibarri, G.; Grierson, D. S. Synlett 1993, 20. (b) Audrain, H.; Skrydstrup, T.; Ulibarri, G.; Riche, C.; Chiaroni, A.; Grierson, D. S. Tetrahedron 1994, 50, 1469. (c) Shibuya, M.; Sakai, Y.; Naoe, Y. Tetrahedron Lett. 1995, 36, 897. (d) Iida, K.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 8875. (e) Kawata, S.; Y oshimura, F.; Irie, J.; Ehara, H.; Hirama, M. Synlett 1997, 250. (f) Wang, J.; De Clercq, P. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1749. (g) Takahashi, T.; Tanaka, H.; Matsuda, A.; Yamada, H.; Matsumoto, T.; Sugiura, Y. Tetrahedron Lett. 1996, 37, 2433. (h) Takahashi, T.; Tanaka, H.; Yamada, H.; Matsumoto, T.; Sugiura, Y. Angew. Chem., Int. Ed. Engl. 1996, 35, 1835. (i) Takahashi, T.; Tanaka, H.; Yamada, H.; Matsumoto, T.; Sugiura, Y. Angew. Chem., Int. Ed. Engl. 1997, 36, 1524.
(21) (a) Semmelhack, M. F.; Gallagher, J. Tetrahedron Lett. 1993, 34, 4121. (b) Semmelhack, M. F.; Gallagher, J. J.; Ding, W.-D.; Krishnamurthy, G.; Babine, R.; Ellestad, G. A. J. Org. Chem. 1994, 59, 4357.
(22) (a) Maier, M. E.; Brandstetter, T. Tetrahedron Lett. 1991, 32, 3679. (b) Maier, M. E.; Greiner, B. Liebigs Ann. Chem. 1992, 855.
(23) Nuss, J. M.; Murphy, M. M. Tetrahedron Lett. 1994, 35, 37.
(24) (a) Dai, W.-M.; Fong, K. C.; Danjo, H.; Nishimoto, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 779. (b) Dai, W.-M.; Fong, K. C. Tetrahedron Lett. 1996, 37, 8413. (c) Dai, W.-M.; Lee, M. Y. H. Tetrahedron Lett. 1998, 39, 8149.
(25) (a) Hopf, H.; Theurig, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1099. (b) Hopf, H.; Theurig, M.; J ones, P. G.; Bubenitschek, P. Liebigs Ann. Chem. 1996, 1301. (c) Bunnage, M. E.; Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1996, 35, 1110. (d) Bunnage, M. E.; Nicolaou, K. C. Chem. Eur. J. 1997, 3, 187.
(26) Review: Maier, M. E. Synlett 1995, 13.
(27) Corey, E. J.; Snider, B. B. J. Am. Chem. Soc. 1972, 94, 2549.
(28) Pourcel ot, G.; Cadiot, P.; Willemart, A. C. R. Hebd. Seances Acad. Sci. 1961, 252, 1630.

Scheme 2

Scheme 3

trifluoromethanesulfonic acid [TfOH (1 equiv), EtOH, 20 $\left.{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}\right]$. These results indicate that ionization of 5 cannot take place under the acidic conditions.

The methyl anal ogue 9 was synthesized from α-bromocrotonaldehyde (7) ${ }^{29}$ as shown in Scheme 3. A sequence different from Scheme 2 was used to introduce the two alkynyl units into 7. In contrast to 4, a similar crosscoupling of 3-methyl-2-bromoallyl alcohol, formed from 7 and $\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{SPh}$, failed to provide the desired product. Therefore, bromination of (E)-crotonaldehyde $\left(\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right)$ followed by treatment with $\mathrm{Et}_{3} \mathrm{~N}(20$ $\left.{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ afforded α-bromocrotonal dehyde (7) in 72% overall yield. Cross-coupling of 7 with 6-methoxy-1hexyne [$5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 20 \mathrm{~mol} \%$ of Cul, 2 equiv of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$] gave eneyne al dehyde 8 in only 10% yield. We attempted to improve efficiency of the reaction but failed. Addition of $\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{SPh}$ to 8 in THF ($-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$) afforded 1,2-dialkynylallyl alcohol 9 in 62% yield. Unfortunately, treatment of 9 with CSA or TfOH (1 equiv) in the presence of EtOH (2 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ failed to form any product; the starting allyl alcohol 9 was recovered. At this point, we realized that a better stabilizing group for the allylic cation intermediate is required to facilitate the ionization of 1,2-dialkynylallyl alcohols.

We considered the phenyl analogue $\mathbf{1 2}$ as a suitable substrate for the acid-catalyzed rearrangement at room
temperature in the expectation that the phenyl ring could facilitate ionization of the allyl al cohol. We prepared 1,2dialkynylallyl alcohol $\mathbf{1 2}$ from the commercially available α-bromocinnamaldehyde (10) ${ }^{30}$ in two steps as shown in Scheme 4. The $\operatorname{Pd}(0)-\mathrm{Cu}(\mathrm{I})$-catalyzed cross-coupling of 10 with 6-methoxy-1-hexyne under the standard conditions [$5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 20 \mathrm{~mol} \%$ of $\mathrm{Cul}, 2$ equiv of $\left.E t_{3} \mathrm{~N}, \mathrm{THF}, 20^{\circ} \mathrm{C}, 1 \mathrm{~h}\right]$ furnished eneyne aldehyde $\mathbf{1 1}$ in 90% yield. Addition of $\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{SPh}$ to $\mathbf{1 1}$ (THF, -78 ${ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$) gave 12 in 79% yield. It was very encouraging to find that treatment of $\mathbf{1 2}$ with 1 equiv of CSA in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20^{\circ} \mathrm{C}, 16 \mathrm{~h}\right)$ produced the desired cis-enediyne 13 (56\%) together with a 34:66 mixture of two isomeric allyl alcohols 14 and 15 (26\% combined yield). We monitored the conversion of $\mathbf{1 2}$ (1 equiv of $\mathrm{CSA}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $20^{\circ} \mathrm{C}$) by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. The compositions of the reaction mixture against time are plotted in Figure 1, featuring a gradual decrease of $\mathbf{1 2}$ and increases of the three products $\mathbf{1 3 - 1 5}$ over the first 3 h . Because of overlap of the signals of $\mathbf{1 4}$ and $\mathbf{1 5}$ with others in the ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures, their ratios could not be determined separately by the integrations. After 3 h reaction, an equilibrium mixture of 12:13: (14+15) in the ratio of 6.5:58.5:35.0 was obtained. These results indicate that our desired cis-enediyne $\mathbf{1 3}$ is thermodynamically much more stable than 12 and is formed preferentially during the rearrangement. This is further supported by the significant difference in the reaction time of $\mathbf{1 2}$ and $\mathbf{1 3}$ for acid-catalyzed ionization to form the same allylic cation in the presence of nucleophiles (vide infra).

The structures of allyl alcohols 12-15 were assigned according to the chemical shifts of the vinyl and methine protons and the NOE data as depicted in Figure 2. Positions of the double bonds in 12-15 are determined by the absence or presence of a NOE between the vinyl and ortho benzene protons. For compounds 12 and 15, NOEs of 14.5% and 4.0% were observed among the vinyl and ortho benzene protons, respectively, upon irradiation at the vinyl proton; a NOE was not detected between the methine and ortho benzene protons when the methine proton was irradiated. The small NOE value of 4.0% between the vinyl and ortho benzene protons in $\mathbf{1 5}$ (only one enantiomer shown) indicates that the benzene ring is not coplanar with the double bond. This also explains the NOE (5.8\%) between the methine proton and the other ortho benzene proton in 15. For compounds $\mathbf{1 3}$ and 14, NOE values between the vinyl and ortho benzene protons were not recorded. Instead, NOEs between the methine and ortho benzene protons were noted (7.2% and 10.9%, respectively) upon irradiation at the methine proton. These data revealed that the double bond in 13 and $\mathbf{1 4}$ is not conjugated with the benzene ring. The cis relationship of the two alkynyl groups in 13 was unequivocally confirmed by a well-established chemical transformation. ${ }^{24 a}$

We investigated the acid-catalyzed transformation of 12 and $\mathbf{1 3}$ in the presence of nucleophiles such as al cohols and thiols. Scheme 5 and Table 1 show the results of the reactions of allyl alcohols $\mathbf{1 2}$ and $\mathbf{1 3}$ with a number of alcohols and thiols catalyzed by CSA. It is interesting to realize that only two regioisomers, 16 and 17, were formed in these reactions. The major products were

[^2][^3]
Scheme 4

determined as cis-enediynes 16; trans-enediynes were not detected in any reaction. The following aspects can be summarized from Table 1: (a) reactions in alcoholic solvents are much slower than in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (entries 1 and 2 versus entry 3) perhaps as a result of the competition of solvent molecules for protonation, (b) the regioselectivity of $\mathbf{1 6 : 1 7}$ is higher for reactions of al cohols (ca. 96: 4) compared with those of thiols (ca. 70:30) regardless of the bulkiness of the nucleophiles, and (c) enediyne al cohol $\mathbf{1 3}$ gave the same products as $\mathbf{1 2}$ under the same acidic conditions (entries 8 and 9 versus entries 3 and 5) after a prol onged reaction. This last observation suggests that allyl alcohols $\mathbf{1 2}$ and $\mathbf{1 3}$ share the same reactive intermediate in the reactions. M oreover, enediyne alcohol 13 is confirmed to be thermodynamically much more stable than 1,5-diyne al cohol 12.

We examined the effect of the alkynyl groups in the allyl al cohols 18a- $\mathbf{c}^{24 a}$ on the regioselectivity of the allylic rearrangement (Table 2). Exposure of 18a-c to CSA and EtOH in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ gave cis-enediynes $19 \mathrm{a}-\mathbf{c}$ in good to excellent yield. The phenylacetylenic group at C_{1} of the allyl alcohols enhanced the reactivity and reduced the reaction time from 93 h for 18a to 45 h for $\mathbf{1 8 b}$ and from 3 h for $\mathbf{1 2}$ (Table 1, entry 3) to 2 h for 18c. Regioselectivity of the allylic rearrangement was also improved for 18b,c (single isomer formed) versus 94:6 for 18a and $96: 4$ for $\mathbf{1 2}$ (Table 1, entry 3), respectively.

Figure 1. Conversion of $\mathbf{1 2}$ in the presence of 1.0 equiv of CSA in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ as monitored by ${ }^{1} \mathrm{H}$ NMR on a 400 MHz instrument. The relative ratios of $\mathbf{1 2 - 1 5}$ were obtained by integrations of the vinyl and methine protons, respectively.
p-MeOPh-Substituted Allyl Alcohols. The successful transformation of $\mathbf{1 2}$ into cis-enediynes $\mathbf{1 6}$ prompted us to synthesize the p-M eOPh-substituted substrate 29 to examine the possibility of effecting the allylic rearrangement under milder acidic conditions. 1,2-Dialkynylally al cohols 29 and 30 were synthesized from p-anisaldehyde (21) according to Scheme 6. The Horner-Wadsworth-E mmons reaction of trimethyl phosphonoacetate with 21 ($\mathrm{n}-\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$, then $20^{\circ} \mathrm{C}, 5 \mathrm{~h}$) afforded α, β-unsaturated ester 22 in quantitative yield. Addition of Br_{2} to 22 followed by $\mathrm{Et}_{3} \mathrm{~N}$-mediated elimination of $\mathrm{HBr}\left(20^{\circ} \mathrm{C}, 16 \mathrm{~h}\right)$ produced an inseparable mixture of α-bromo- α, β-unsaturated esters $\mathbf{2 3}$ and $\mathbf{2 4}$ in the ratio

12

14

13

15

$$
\mathrm{R}^{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OMe} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{SPh}
$$

Figure 2. NOE experiments for compounds 12-15 measured on a 400 MHz instrument in CDCl_{3} at room temperature: (a) irradiated at the vinyl proton at 6.75 ppm ; (b) irradiated at the methine proton at 4.90 ppm ; (c) irradiated at the vinyl proton at 5.95 ppm ; (d) irradiated at the methine proton at 5.17 ppm ; (e) irradiated at the vinyl proton at 6.06 ppm ; (f) irradiated at the methine proton at 4.80 ppm for both 14 and 15; (g) irradiated at the vinyl proton at 6.00 ppm ; (h) assignment of 5.8% and 10.9% NOE to $\mathbf{1 4}$ and $\mathbf{1 5}$ is tentative.

Scheme 5
(2 or 13 CSA, NuH

Table 1. Synthesis of Enediynes $\mathbf{1 6}^{\mathbf{a}}$

entry	substrate	NuH, t (h)	products (\%)	ratio (16:17)
$1{ }^{\text {b }}$	12	$\mathrm{MeOH}, 48$	16a (73); 17a (2)	97:3
$2^{\text {b }}$	12	EtOH, 120	16b (70); 17b (3)	96:4
3	12	EtOH, 3	16b (71); 17b (3)	96:4
4	12	i-PrOH, 4	16c (65); 17c (3)	96:4
5	12	EtSH, 2.5	16d + 17d (79)	67:33
6	12	t-BuSH, 2	16e + 17e (61)	73:27
7	12	PhSH, 2.5	$\mathbf{1 6 f}+17 \mathrm{f}$ (54)	69:31
8	13	EtOH, 48	16b (55); 17b ${ }^{\text {c }}$	
9	13	EtSH, 48	16d + 17d (61)	68:32

${ }^{\text {a }}$ Reactions were performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of 1 mole equiv of CSA (0.16 M) and 2 mole equiv of nucleophile at $20^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ The nucleophile was used as solvent. c Not isolated.

Table 2. Synthesis of Enediynes 19a

${ }^{\text {a }}$ Reactions were performed in the presence of 0.5 mole equiv of CSA ($0.043-0.048 \mathrm{M}$) and 4 mole equiv of EtOH. ${ }^{\text {b }}$ One mole equivalent of CSA (0.062 M) and 2 mole equiv of EtOH were used.
of 77:23 (80% combined yield). ${ }^{31}$ The mixture of $\mathbf{2 3}$ and 24 was used in the cross-coupling reaction with 6-meth-oxy-1-hexyne [$5 \mathrm{~mol} \%$ of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 20 \mathrm{~mol} \%$ of Cul, 2 equiv of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 20^{\circ} \mathrm{C}, 22 \mathrm{~h}$] to give eneyne esters 25 and $\mathbf{2 6}$ in 86% yield with a similar isomeric ratio of 76:24. Conversion of the ester group in $\mathbf{2 5}$ and $\mathbf{2 6}$ into the corresponding formyl group was achieved by the reduction (DIBAL-H, PhMe, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 87 \%$) and oxidation (PDC, $4 \AA \mathrm{MS}, \mathrm{THF}, 20^{\circ} \mathrm{C}, 4.5 \mathrm{~h}, 81 \%$)

[^4]sequence. It is critical to use THF as the solvent for the PDC oxidation to obtain the minor aldehyde $\mathbf{2 8}$, which could not be isolated from the same oxidation in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fortunately, the isomeric aldehydes $\mathbf{2 7}$ and $\mathbf{2 8}$ can be separated by repeated flash column chromatography over silica gel; however, we used the mixture for the following reaction. Addition of $\mathrm{LiC} \equiv \mathrm{CCH}_{2} \mathrm{SPh}$ to 27 and 28 (THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$) furnished the allyl alcohols 29 and 30 in 71% and 7% isolated yield, respectively. Compounds 29 and $\mathbf{3 0}$ were separated by flash column chromatography over silica gel, but some mass of the minor isomer 30 was lost during the repeated separation process. NOE experiments were carried out for compounds 29 and 30 (Figure 3). I rradiation at the vinyl proton (6.73 ppm) of 29 gave 16.5% and 17.2% enhancement of the signals of the methine proton and the ortho proton of the paramethoxyphenyl group, respectively. Irradiation at the methine proton (4.92 ppm) of 29 resulted in 13.3% NOE for the vinyl proton only. Similar NOE effects between the methine/vinyl protons and the aryl/vinyl protons were also observed for compound 30 even though the NOE effects are stronger than those of compound $\mathbf{1 5}$ (Figure 2).

With compounds 29 and 30 in hand, we examined the allylic rearrangement under different acidic conditions (Scheme 7 and Table 2). Treatment of 29 with 1 equiv of CSA in the presence of 2 equiv of EtOH at $20^{\circ} \mathrm{C}$ for only 15 min afforded a mixture of 31c and 32c (77:23) in 78\% yield (entry 1). The enhanced reactivity of 29 toward ionization was further demonstrated in entries 2 and 3. A weaker acid, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, promoted the allylic migration of $\mathbf{2 9}$ to form 31c and 32c (82:18, 68\%) after 48 h at 20 ${ }^{\circ} \mathrm{C}$ (entry 2), or a catalytic amount of CSA (0.2 equiv) completed the same transformation of 29 in 2 h at $20^{\circ} \mathrm{C}$ (entry 3). In the latter reaction, the rearranged cisenediyne alcohol 31a ($\mathrm{Nu}=\mathrm{OH}$) was isolated in 15% yield; this product could be suppressed by using 4 equiv of EtOH (entry 5). The allylic migration of $\mathbf{2 9}$ took place sluggishly in refluxing formic acid (6 equiv) in the presence of EtOH (2 equiv), and after 66 h , the formic acid adducts were isolated in 20% yield (data not listed in Table 2). Selectivity for the formation of enediynes 31c and 32 c was affected by the acid, the amount of acid, and the reaction temperature (entries 1-4). To balance the reaction time and the selectivity, a set of reaction conditions (0.5 equiv of $\mathrm{CSA}, 4$ equiv of $\mathrm{EtOH}, 0^{\circ} \mathrm{C}$) was developed as illustrated in entry 5 . From 1,2-dialkynylallyl alcohol 29, cis-enediyne 31c could be isolated in 94:6 ratio and in excellent yield.
Reactions of different alcohols (4 equiv) with 29 catalyzed by 0.5 equiv of CSA at $0^{\circ} \mathrm{C}$ were compared (Table 3, entries 5-8). With increasing bulkiness of the alcohols in the order of $\mathrm{MeOH}, \mathrm{EtOH}, \mathrm{i}-\mathrm{PrOH}$, and t -BuOH, the reaction time increased accordingly from 3.5 to 7,9 , and 23 h , and the combined yield of enediynes 31 and 32 decreased from 90% to $89 \%, 77 \%$, and 20%. The diminished reactivity of t -BuOH due to steric hindrance resulted in the formation of the dimeric ethers 35 (78\%) as the major products, arising from the addition of the rearranged allyl alcohol 31a or 32a to the reactive intermediates. The isolated 35 was a very complex and inseparable mixture of at least three components that were confirmed by ${ }^{1} \mathrm{H}$ NMR and MS data. The dimeric ether 35 was also obtained from the reaction of $i-\mathrm{PrOH}$ (11%, entry 7). Diastereoselectivity among cis- and transenediynes 31b-e and 32b-e varied from 94:6 to 82:18.

Scheme 6

Primary alcohols offered the best cis/trans diastereoselectivity (94:6) in favor of cis-enediynes 31b,c. The isomer 33 was not produced in the reactions of al cohols with 29; but the related isomer 17 was isolated from the same reactions of allyl alcohol 12 (Table 1). Compounds 31b-e could not be separated from 32b-e by silica gel column chromatography, and their structures and ratios were determined by chemical shifts and integrations of the vinyl and methine protons.

Thiols gave a much shorter reaction time (2-4h) than alcohols in the allylic rearrangement of 29 catalyzed by CSA (entries 9-12). Variations in the amount of CSA and EtSH at $0^{\circ} \mathrm{C}$ had no visible influence on chemical yield and product distribution, as shown in entries 9 and 10. It is interesting to note that the sterically demanding t-BuSH gave essentially the same result as that of EtSH

Figure 3. NOE experiments for compounds 29 and 30 measured on a 400 MHz instrument in CDCl_{3} at room temperature: (a) irradiated at the vinyl proton at 6.73 ppm ; (b) irradi ated at the methine proton at 4.92 ppm ; (c) irradiated at the vinyl proton at 6.80 ppm ; (d) irradiated at the methine proton at 5.17 ppm .
(entries 10 and 11); this is a different profile from the reactions of alcohols. However, more than two products were isolated from the thiol-associated allylic migration. In regard to the product distribution, there are two ratios that need to be mentioned, regioselectivity (31:33) and cis/trans diastereosel ectivity (31:32). Reactions of EtSH, t-BuSH, and PhSH afforded 92:8, 90:10, and 87:13 ratios for 31:33, respectively. These values are higher than the corresponding data obtained from the reactions of EtSH (67:33), t-BuSH (73:27), and PhSH (69:31) with allyl alcohol 12 at $20^{\circ} \mathrm{C}$ (Table 1). Ratios of enediynes 31 to 32 are 84:16 (EtSH), 80:20 (t-BuSH), and 90:10 (PhSH), which are lower than the analogous reactions of EtOH (94:6) and t-BuOH (86:14) with 29. A fourth compound 34h was formed in the reaction of PhSH with 29. Compounds 31-34 (Nu = EtS, t-BuS, PhS) are inseparable mixtures whose ratios were measured by the integrations of their characteristic signals in the ${ }^{1} \mathrm{H}$ NMR spectra.

Reaction of allyl alcohol $\mathbf{3 0}$ with EtOH was performed in the presence of 0.5 equiv of CSA and 4 equiv of EtOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 3, entry 13). Compound 30 did not show visible change at $0^{\circ} \mathrm{C}$ under the same acidic conditions used for 29. It suggests that formation of the allylic cation from $\mathbf{3 0}$ is much more difficult. At higher temperature ($20^{\circ} \mathrm{C}$ for 90 h), a mixture of 31c and 32c (74:26) was isolated in 32% yield together with the dimeric ethers 35 (31\%). It is interesting to note that compound 34c (Nu $=$ EtO) was not formed in the reaction of 30, which provides a piece of evidence for the discussion of isomerization of the allylic cations in the acid-catalyzed allylic rearrangement (vide infra).

Kinetic Studies. The acid-catalyzed isomerization of cis-1-methyl-3-phenylallyl alcohol (36) and trans-1-phen-yl-3-methylallyl al cohol (37) were reported by Pocker and Hill (Scheme 8). ${ }^{32}$ Pseudo-first-order rate constants were

Scheme 7

35
measured at different HClO_{4} concentrations in 40% aqueous dioxane. On the basis of the kinetics, these authors concluded that formation of allylic cations 36' and $\mathbf{3 7}^{\prime}$ is the rate-determining step in the acid-catalyzed allylic rearrangement. Activation energies (E_{a}) of 23.632b and $18.8^{32 \mathrm{a}} \mathrm{kcal} / \mathrm{mol}$ were obtained for the loss of water from the protonated allyl al cohols. It is interesting to note that the rearranged product from both $\mathbf{3 6}$ and $\mathbf{3 7}$ is trans-1-methyl-3-phenylallyl al cohol (38), in which conjugation among the phenyl ring and the double bond is maintained. Moreover, a rapid isomerization of the sickle allylic cation $\mathbf{3 6}$ ' into the W-type allylic cation 37^{\prime} was proposed, and the rotation barrier ${ }^{33}$ ($36^{\prime} \rightarrow 37^{\prime}$) and energy difference between $\mathbf{3 6}$ ' and $\mathbf{3 7}{ }^{\prime}$ were estimated to be 7.6 and $7.3 \mathrm{kcal} / \mathrm{mol}$, respectively. ${ }^{34}$

We carried out kinetic studies on the acid-catalyzed conversion of 3-aryl-1,2-dialkynylallyl alcohols 12 and 29 in a mixed solvent system, i.e., $\mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}(1: 1)$. Because the reaction rate is dependent on acid concentration, by selecting a suitable concentration of CSA we

[^5]can follow the reaction course on the NMR time scale. Use of $\mathrm{CD}_{3} \mathrm{OD}$ as the cosolvent has two considerations: (a) methanol is known to slow the reaction (see entry 1, Table 1) and then allows the kinetic measurements using the NMR technique; and (b) methanol is a nucleophile that reacts with the allylic cation to form the allyl ethers. The disapperance of $\mathbf{1 2}$ or $\mathbf{2 9}$ was monitored on a 400 MHz NMR instrument by measuring the relative ratios of the substrate to an acid-stable internal reference compound, methyl 3,5-dinitrobenzoate, at different reaction times. Figure 4 shows the pseudo-first-order reaction of $\mathbf{1 2}$ in the given acid concentrations at 30,40 , and 55 ${ }^{\circ} \mathrm{C}$. The slopes of the plots in Figure 4 give the pseudo-first-order rate constants ($\mathrm{K}_{\mathrm{obs}}$) from which the rate constants (k) were calculated by the equation $k=k_{\text {obs }} /$ [CSA]. The rate constants (k) and half-lives $\left(t_{1 / 2}\right)$ for the conversion of $\mathbf{1 2}$ at the given temperatures and acid concentrations are summarized in Table 4. On the basis of the rate constants (k) at 30,40 , and $55^{\circ} \mathrm{C}$, an activation energy (E_{a}) of $19.1 \mathrm{kcal} / \mathrm{mol}$ is estimated from the Arrhenius equation by the plot of In k versus $1 / T$.

Because the p-MeOPh-substituted allyl alcohol 29 is much more reactive than 12, the kinetic measurements were performed at further diluted acid concentrations. Figure 5 shows the pseudo-first-order reactions of 29 at 30, 40, 50, and $60{ }^{\circ} \mathrm{C}$. From these plots and the acid concentrations [CSA], the rate constants (k) were cal culated and are listed in Table 5. An activation energy (E_{a}) of $17.2 \mathrm{kcal} / \mathrm{mol}$ is estimated using the Arrhenius equation. The reduced activation energy for 29 clearly indicates the involvement of a positively charged species in the rate-determining step.

Reactions of Chiral Allyl Alcohols. Regioselectivity of the CSA-catalyzed allylic rearrangement varies remarkably with different nucleophilic species. In general, excellent ratios ($\geq 96: 4$) in favor of enediyne products are achieved for alcohols. In contrast, thiol nucleophiles give low regioselectivity (ca. 70:30 for 12 and ca. 90:10 for 29). We consider that the two reactive intermediates 43 and 44 might be involved in the product-forming step (Scheme 9). ${ }^{35}$ A nucleophile attacks at the protonated allyl alcohol in either an $\mathrm{S}_{\mathrm{N}} 2$ or an $\mathrm{S}_{N} 2^{\prime}$ fashion to form two regioisomers. The same regioisomers can be produced through nucleophilic trapping at either the α or γ carbon of the allylic cation. If a chiral substrate is used, we are able to differentiate these reaction pathways by simply measuring the enantiomeric ratios of the products.
We prepared two chiral allyl alcohols (-)-12 and (-)18c by asymmetric reduction of ketones 45a,b using (+)-DIP-chloride ${ }^{36}$ (Scheme 10). Oxidation of racemic (\pm)-12 to ketone 45a failed with MnO_{2}. By the use of PCC in the presence of $4 \AA \mathrm{MS}\left(20^{\circ} \mathrm{C}, 5 \mathrm{~h}\right)$, 45a was obtained from (\pm) - $\mathbf{1 2}$ in 51% yield. Oxidation of racemic $(\pm)-18 \mathrm{c}$ using $\mathrm{MnO}_{2}\left(20{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ provided ketone 45 b in 83% yield. Reduction of 45a,b by (+)-DIP-chloride in $\mathrm{Et}_{2} \mathrm{O}$ at $-25^{\circ} \mathrm{C}$ for 7.5 h followed by the standard workup procedure ${ }^{37}$ afforded (-)-12 and (-)-18c in good yield and

[^6]Table 3. Synthesis of Enediynes 31 and 32 by Acid-Catalyzed Rearrangement of 29 and 30a

entry	substrate	acid (equiv)	NuH (equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right), \mathrm{t}(\mathrm{h})$	products (\%)	ratio (31:32:33:34) ${ }^{\text {b }}$
1	29	CSA (1)	EtOH (2)	20, 0.25	31c + 32c (78)	77:23:0:0
2	29	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (1)	EtOH (2)	20, 48	$31 \mathbf{c}+32 \mathrm{c}$ (68)	82:18:0:0
3	29	CSA (0.2)	EtOH (2)	20, 2	31c + 32c (84); 31a (15)	86:14:0:0
4	29	CSA (0.2)	EtOH (2)	0, 28	31c + 32c (74); 31a (3) ${ }^{\text {c }}$	95:5:0:0
5	29	CSA (0.5) ${ }^{\text {d }}$	EtOH (4)	0, 7	31c + 32c (89)	94:6:0:0
6	29	CSA (0.5)	MeOH (4)	0, 3.5	31b + 32b (90)	94:6:0:0
7	29	CSA (0.5)	i-PrOH (4)	0,9	31d + 32d (77); 35 (11)	82:18:0:0
8	29	CSA (0.5)	t-BuOH (4)	0, 23	$31 \mathrm{e}+32 \mathrm{e}$ (20); 35 (78)	86:14:0:0
9	29	CSA (0.2)	EtSH (2)	0,12	31f $+32 \mathbf{~ + ~} \mathbf{3 3 f}$ (88)	75:17:8:0
10	29	CSA (0.5)	EtSH (4)	0, 3	31f + 32f + 33f (88)	78:15:7:0
11	29	CSA (0.5)	t-BuOH (2)	0, 4	$\mathbf{3 1 g}+\mathbf{3 2 g}+\mathbf{3 3 g}(85)$	74:18:8:0
12	29	CSA (0.5)	PhSH (2)	0, 2	31h $+32 \mathrm{~h}+33 \mathrm{~h}+\mathbf{3 4 h}(76)$	74:8:11:7
13	30	CSA (0.5)	EtOH (4)	20, 90	31c + 32c (32); 35 (31)	74:26:0:0

a Reactions were performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{c}}$ Also, 16% of 29 recovered. d Final concentration of CSA is 0.03 M .

Figure 4. CSA-catalyzed conversion of $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$ (1:1) at 30,40 , and $55^{\circ} \mathrm{C}$, as measured by ${ }^{1} \mathrm{H}$ NMR on a 400 MHz instrument.

Scheme 8

in $>94 \%$ ee, respectively. Enantiomeric excess of the chiral alcohols was determined by HPLC analysis in comparison with racemic authentic samples using a Chiralpak AD or AS column. The absolute stereochemistry of the chiral al cohols was not determined. Reactions of $(-)-12$ and $(-)-18 c$ with EtOH and EtSH were then

[^7]Table 4. Rate Constants (k) and Half-Lives ($t_{1 / 2}$) of Allyl Migration of 12 Catalyzed by CSA in $\mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}$ at Various Temperatures As Measured by ${ }^{1} \mathrm{H}$ NMR; $k=$ $\mathrm{k}_{\mathrm{obs}}$ [CSA]

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$[\mathrm{CSA}](\mathrm{M})$	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$	correlation coeff	$\mathrm{t}_{1 / 2}(\mathrm{~min})$
30	4.38×10^{-2}	2.15×10^{-3}	0.995	128.2
40	4.47×10^{-2}	6.64×10^{-3}	0.998	37.0
55	4.08×10^{-2}	23.8×10^{-3}	0.998	11.1

Figure 5. CSA-catalyzed conversion of $\mathbf{2 9}$ in $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$ (1:1) at $30,40,50$, and $60^{\circ} \mathrm{C}$, as measured by ${ }^{1} \mathrm{H}$ NMR on a 400 MHz instrument.
carried out under the same acidic conditions used for the racemic substrates. The results are summarized in Table 6. The enantiomeric ratios of products 16b,d, 17b,d, 19c,

Table 5. Rate Constants (k) and Half-Lives ($t_{1 / 2}$) of Allyl Migration of 29 Catalyzed by CSA in $\mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}$ at Various Temperatures As Measured by ${ }^{1}$ H NMR; k = $k_{\text {obs }}$ [CSA]

42

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$[\mathrm{CSA}](\mathrm{M})$	$\mathrm{k}\left(\mathrm{s}^{-1}\right)$	correlation coeff	$\mathrm{t}_{1 / 2}(\mathrm{~min})$			
30	4.73×10^{-4}	0.24	0.998	102.2			
40	4.88×10^{-4}	0.56	0.997	42.6			
50	5.16×10^{-4}	1.13	0.998	19.7			
60	4.73×10^{-4}	3.33	0.997	7.3			
		Scheme 9					

46, and 47 were analyzed by HPLC over chiral columns and all were proved to be in racemic form. These findings confirm that the regioisomeric products are formed from the dissociated allylic cation 44. The protonated intermediate $\mathbf{4 3}$ is not involved in the product-forming step.

Mechanistic Considerations. With regard to the structures of the allylic cations, we suggest the possibility of three species, the W-type allylic cations (48 and 49) and two kinds of sickle allylic cations (50-53), being formed from allyl alcohols 12-15, 29, and 30 via acidcatalyzed ionization (Scheme 11). The U-type allylic cation is not considered because of its extremely high instability. The two sickle allylic cations suffer from $A^{1,3}$ strain among the substituent and the proton at the α and γ positions and are less stable than the W-type allylic cation. Severe $A^{1,3}$ strain is expected for 52 and 53 between the aryl group and the allylic proton. ${ }^{32 b}$ This accounts for the relatively high ratio of $\mathbf{1 5}$ to $\mathbf{1 4}$ (66:34) in the equilibrium mixture obtained from the acidcatalyzed rearrangement given in Scheme 4 and Figure 1. Ionization of $\mathbf{1 5}$ to form $\mathbf{5 2}$ should be much more difficult compared to that of 14, and allyl alcohol $\mathbf{1 5}$ is then accumulated in the reaction mixture. M oreover, the high instability facilitates a rapid isomerization ${ }^{32 b, 34}$ of allylic cation 53 into 49. This explains why compound 34c (formed by attack of a nucleophile at the α position of 53) is not formed from $\mathbf{3 0}$ and EtOH under the acidic conditions (Scheme 7 and Table 3, entry 13). Acidcatalyzed ionization of $\mathbf{1 2}$ and $\mathbf{1 3}$ should form predomi-

Scheme 10

Table 6. Enediynes Formed from Chiral Alcohols (-)-12 and (-)-18c ${ }^{\text {a }}$

entry	substrate	NuH, $\mathrm{t}(\mathrm{h})$	products (\%)	ratio c
1	$(-)-\mathbf{1 2}$	EtOH, 4	$\mathbf{1 6 b}(64) ; \mathbf{1 7 b}(4)$	$96: 4$
2	$(-) \mathbf{- 1 2}$	EtSH, 4	$\mathbf{1 6 d}+\mathbf{1 7 d}(55)$	$70: 30$
3	$(-)-\mathbf{1 8 c}$	EtOH, 2	$\mathbf{1 9 c}(65) ; \mathbf{2 0 c}(0)$	$100: 0$
4	$(-)-\mathbf{1 8 c}$	EtSH, 0.5	$\mathbf{4 6}+\mathbf{4 7}(60)$	$69: 31$

a Reactions were performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of 1 mole equiv of CSA ($0.055-0.067 \mathrm{M}$) and 2 mole equiv of nucleophile at $20^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ All products were obtained in racemic forms as checked by HPLC over a chiral column. See Experimental Section for details. ${ }^{\text {c }}$ The regioisomeric ratio of 16b:17b, 16d:17d, 19c:20c, and 46:47, respectively.
nantly the W-type allylic cation 48, although enediyne alcohol $\mathbf{1 3}$ undergoes ionization slower than 12. This is attributed to the great thermodynamical stability of 13 over 12 (see the ab inito calculations below). Thus, we assume that it is almost impossible for $\mathbf{1 3}$ to form the much more unstable cation 52 at room temperature, whereas $\mathbf{1 2}$ may give cation $\mathbf{5 0}$ as the minor ionization pathway. A rapid isomerization eventually converts 50 into the W-type allylic cation 48. The above argument is supported by the fact that both $\mathbf{1 2}$ and $\mathbf{1 3}$ furnish the same product mixtures with EtOH and EtSH in the presence of CSA (Scheme 5 and Table 1). When the lifetime of allylic cation 51 increases as a result of extra stabilization (ca. $12 \mathrm{kcal} / \mathrm{mol}$, see the ab inito calculations below) from the p-MeO group, nucleophilic trapping at the γ position of 51 is then able to provide transenediynes 32b-h (Scheme 7 and Table 3). Because of the reduced activation energy for ionization of 29 ($1.9 \mathrm{kcal} /$ mol less than 12), formation of cation 51 could be much more competitive than formation of 49. However, we can manipulate the reaction temperature to enhance the selectivity among the two ionization pathways. Low temperature favors the route $\mathbf{2 9} \rightarrow \mathbf{4 9}$, and higher ratios
Scheme 11

12: $\mathrm{Ar}=\mathrm{Ph}$
29: $\mathrm{Ar}=p-\mathrm{MeOPh}$

50: $\mathrm{Ar}=\mathrm{Ph}$
51: $\mathrm{Ar}=p-\mathrm{MeOPh}$

13: $\mathrm{Ar}=\mathrm{Ph}$

15: $\mathrm{Ar}=\mathrm{Ph}$
30: $\mathrm{Ar}=p-\mathrm{MeOPh}$

52: $\mathrm{Ar}=\mathrm{Ph}$
53: $\mathrm{Ar}=\mathrm{p}-\mathrm{MeOPh}$

14: $\mathrm{Ar}=\mathrm{Ph}$

$$
\mathrm{R}^{1}=\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OMe} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{SPh}
$$

Table 7. Total Energies of the Most Stable Conformers of 54a-f and 55a-f Calculated at the RHF/3-21G Level

54a-f

55a-f
$\mathrm{a}: \mathrm{X}=\mathrm{H}, \mathrm{Nu}=\mathrm{OH} ; \mathrm{b}: \mathrm{X}=\mathrm{Me}, \mathrm{Nu}=\mathrm{OH}$;
c: $\mathrm{X}=\mathrm{Ph}, \mathrm{Nu}=\mathrm{OH} ; \mathbf{d}: \mathrm{X}=\mathrm{p}-\mathrm{MeOPh}, \mathrm{Nu}=\mathrm{OH}$;
e: $X=P h, N u=O M e ; f: X=P h, N u=S M e$

54 (hartrees)	55 (hartrees)	$\Delta \mathrm{E}(\mathrm{kcal} / \mathrm{mol})^{\mathrm{b}}$
54a: -341.3590777	55a: -341.3634767	2.76
54b: -380.1830741	55b: -380.1895028	4.03
54c: -569.629115 1	55c: -569.6372705	5.12
54d: -682.8796625	55d: -682.8902420	6.64
54e: -608.4424905	55e: -608.4502351	4.86
54f: -929.5691340	55f: -929.5711065	1.24

${ }^{\text {a }}$ One hartree $=627.5 \mathrm{kcal} / \mathrm{mol}$. ${ }^{\text {b }}$ E nergy difference between 54 and 55. In all cases, enediyne 55 is more stable than 1,5-diyne 54.
of the nucleophilic trapping products 31 and 32 are obtained at $0^{\circ} \mathrm{C}$ compared to the reactions at $20^{\circ} \mathrm{C}$. The different ionization profiles of allylic alcohols $\mathbf{1 2}$ and 29 provide a key to understanding the cis/trans diastereoselectivity associated with enediyne formation under the acid catalysis.

Computational Calculations. To understand the substituent effect on reactivity of allyl alcohols and the origin of regioselectivity observed in the allylic rearrangement, we performed ab initio molecular orbital calculations at the RHF/3-21G level using the Gaussian 94 sets of programs on the model compounds 54a-f and 55a-f and the allylic cations 56-59. The total energies and geometries of the most stable conformers 54a-f and 55a-f are given in Table 7 and Figure 6. We first calculated the three conformations 54a, 54a', and 54a"
(see Supporting Information). We found that 54a is more stable than 54a' and 54a" by 3.03 and $3.96 \mathrm{kcal} / \mathrm{mol}$, respectively, because of a favorable electrostatic interaction between the oxygen atom and the olefinic proton. In contrast, the sulfur analogue $\mathbf{5 4 g}$ (structure not shown) is $0.26 \mathrm{kcal} / \mathrm{mol}$ less stable than $\mathbf{5 4 g}$ as a result of the larger van der Waal radius of sulfur (see Supporting Information). We noted a similar electrostatic interaction in other oxygen-containing systems. For examples, allyl alcohol 54c is more stable than $\mathbf{5 4 c}$ c by $1.20 \mathrm{kcal} /$ mol, and allylic ether 54e is more stable than 54e' by $3.75 \mathrm{kcal} / \mathrm{mol}$. The hydroxy or methoxy group in $54 \mathrm{a}-\mathbf{e}$ and $55 \mathrm{a}-\mathbf{e}$ is generally out of the allylic plane by ca. 10°, and the distance between the oxygen atom and the ol efinic proton is within $2.175-2.296 \AA$. However, allylic thioether 54f possesses a conformation different from that of 54e, for example. The sulfur group in $\mathbf{5 4 f}$ is almost in the perpendicular position relative to the allylic plane (94.9°). Conformer 54 f is $0.77 \mathrm{kcal} / \mathrm{mol}$ more stable than $54 f^{\prime}$, in which the allylic and olefinic protons are in close contact ($2.208 \AA$, twisted from the allylic plane by only 4.2°). The most important structural feature of the $\mathrm{C}_{3^{-}}$ aryl-substituted compounds $54 \mathbf{c}-\mathbf{f}$ is that the aromatic ring twists from coplanarity with the double bond by $28-$ 33° (Figure 6). This conformation avoids the severe van der Waal interaction among one of the ortho protons in the aryl group and the C_{2}-alkynyl unit. However, the distances of $2.526-2.581 \AA$ for $54 \mathbf{c}-\mathbf{f}$ are shorter than those of 55c-f ($3.085-3.322 \AA$). We found that enediynes 55a-f are much more stable than the corresponding regioisomers 54a-f, perhaps because of the conjugation of both alkynyl groups with the double bond (Table 7). When $\mathrm{Nu}=\mathrm{OH}$, the energy difference between 54 and 55 ($\Delta \mathrm{E}$ in $\mathrm{kcal} / \mathrm{mol}$) increases in the order of $\mathrm{X}=\mathrm{H}(2.76)$ $<\mathrm{X}=\mathrm{Me}(4.03)<\mathrm{X}=\operatorname{Ph}(5.12)<\mathrm{X}=\mathrm{p}-\mathrm{MeOPh}(6.64)$. We found that this order is parallel to the stability order of the corresponding allylic cations 56-59 (Figure 7). The bulkiness of the Nu group has a significant influence on $\Delta \mathrm{E}$ for C_{3}-phenyl-substituted compounds: OH (5.12) >

54a

55a

55c

54b

54d

55b

Figure 6. The most stable geometries of $\mathbf{5 4 c}-\mathbf{f}$ and $\mathbf{5 5 c} \mathbf{-} \mathbf{f}$ optimized at the RHF/3-21G level.

56: -266.0579665 ${ }^{\text {a }}$
$(0)^{b}$

57: -304.8973136
(9.63)

58: -494.3629762
(21.95)

59: -607.6320397
(33.56)

Figure 7. Total energies, geometries, and Mulliken charge distribution at the α and γ carbons of allylic cations 56-59 optimized at the RHF/3-21G level. a Total energies in hartrees. ${ }^{\text {bl }}$ ncreased stability compared to $\mathbf{5 6}$ due to the substituent at the γ carbon in $\mathrm{kcal} / \mathrm{mol}$.

OMe (4.86) > SMe (1.24) (in units of $\mathrm{kcal} / \mathrm{mol}$). This stability order is explained by considering the steric demand at the Nu-bearing carbon atom. For example, $\mathrm{Ph}(\mathrm{MeS}) \mathrm{CH}$ - in $55 f$ should suffer from much more repulsive interaction compared to $\mathrm{HC} \equiv \mathrm{C}(\mathrm{MeS}) \mathrm{CH}$ - in

54f. The larger the van der Waal radius of the heteroatom is, the more severe the destabilization suffered.
The ab initio calculations on the W-type allylic cations 56-59 show that all structures are planar with a separation of $2.146-2.321 \AA$ between the allylic protons
(Figure 7). Notably, full conjugation with the aromatic ring is observed in 58 and 59 and is distinguished from the conformations 54c-f. Much more positive charge is found at the γ carbon compared to the α carbon in all cations. Using 56 as the reference, a C_{3} substituent greatly enhances the stability of the cation in the following order: Me (9.63) < Ph (21.95) < p-MeOPh (33.56) (in units of $\mathrm{kcal} / \mathrm{mol}$). Accordingly, the sum of charge at both α and γ carbons decreases with increasing cation stability: +0.97659 (56) $>+0.89354$ (57) $>$ +0.71407 (58) > +0.60987 (59). The calculated stability and charge distribution of allylic cations 56-59 provide the key to understand the reactivity and regioselectivity observed in the acid-catalyzed allylic rearrangement.

Origin of Reactivity and Regioselectivity. As shown in Schemes 2 and 3, the C_{3}-unsubstituted and C_{3} methyl allyl alcohols 5 and 9 did not undergo allylic rearrangement at room temperature in the presence of a strong acid, such as TfOH. N ow, we understand that these alcohols are difficult to undergo acid-catalyzed ionization because the corresponding allylic cations cannot be better stabilized by the C_{3} substituent. In contrast, the C_{3}-arylallyl al cohols $\mathbf{1 2}$ and $\mathbf{2 9}$ are readily converted into allylic cations 48 and 49 at room temperature or below. The calculated substituent effects on the cation stability given in Figure 7 provide the basis for design of suitable precursors that can be transformed into enediynes under mild conditions.

The last issue that needs to be addressed is the regioselectivity observed for nucleophilic trapping of the W-type allylic cations 48 and 49. Reactions of alcohols give excellent selectivity ($\geq 94: 6$) in favor of attack at the γ position to form enediynes. In contrast, thiols provide diminished selectivity of ca. 70:30 with cation 48 at $20^{\circ} \mathrm{C}$ and ca. $90: 10$ with cation 49 at $0^{\circ} \mathrm{C}$. We confirmed that nucleophilic trapping of allylic cations 48 and 49 with thiols is not reversible under the mild acidic conditions. Change in the ratio was not noted in the control experiments using a 67:33 mixture of 16d:17d (1 equiv of CSA, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$, 5 h). Pure isomer 16b was also recovered without change after treatment with CSA (1 equiv, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$). However, a slow isomerization of the less stable regioisomer 17b into 16b was observed; 17b gave a 1:1 mixture of 16b:17b in 80% recovery after treatment under the same acidic conditions (1 equiv of CSA, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 5 \mathrm{~h}$). Considering these facts, we believe that the product ratios given in Tables 1 and 3 for reactions of thiols are kinetically controlled and the ratios for reactions of alcohols are partially thermodynamically controlled. Because the transition state (TS) of the nucleophilic trapping reaction has partial double bond character, the path for formation of the more stable regioisomer should have a better stabilized TS and should take place preferentially. This argument agrees with the finding that enediynes 16a-f and 31a-h are the major products of allylic cations 48 and 49. The diminished selectivity of thiols is consistent with the smaller energy difference among thioethers 54f and 55f compared to that of the oxygen analogues 54e and 55e.

Alternatively, regioselective formation of enediynes can be discussed according to the charge distribution in the allylic cations 58 and 59. A hard nucleophile (alcohol) should favor attack at the γ carbon to form enediynes, and a soft nucleophile (thiol) should give less preference to γ attack. However, allylic cation 58 carries a sum of
+0.71407 charge at the α and γ positions, and less charge $(+0.60987)$ is found for 59. The increased stability of 59 allows the nucleophilic trapping TS to have much more double bond character. Thus, allylic cation 59 demonstrates an enhanced selectivity for formation of the thermodynamically stable enediynes. The computational calculation results agree well with the experimental observations.

Conclusion

We have developed a novel synthetic method for the rearrangement of 3-aryl-1,2-dialkynylallyl alcohols into cis-enediynes under mild acidic conditions. High regioand cis/trans diastereosel etivity is achieved for the reactions carried out in the presence of an alcoholic nucleophile. The allylic rearrangement is confirmed to take place in a stepwise mechanism. It involves an acidcatalyzed ionization step to convert the allyl alcohol into an allylic cation intermediate followed by a nucleophilic trapping step to form the products. Pocker and Hill ${ }^{32}$ reported that formation of the allylic cation is the ratedetermining step for the acid-catalyzed isomerization of allyl al cohols lacking a C_{2} substituent. We observed loss of chirality in the rearrangement of chiral alcohols (-)12 and (-)-18c. This confirms that the allylic cation is the intermediate that produces the final products upon nucleophilic trapping. Enhanced stability of the allylic cation by a C_{3} substituent facilitates the allylic rearrangement under mild acidic conditions. This explains the failure in reactions of C_{3}-unsubstituted and C_{3}-methyl allyl alcohols 5 and 9.

The effect of a C_{3}-aryl group on the ionization of allyl alcohols has been examined. A diminished activation energy of ca. $2 \mathrm{kcal} / \mathrm{mol}$ is observed for CSA-catalyzed rearrangement of the $\mathrm{p}-\mathrm{MeOPh}$-substituted allyl alcohol 29 compared to the Ph analogue 12 in 50\% CD 3 OD in CDCl_{3}. Stability of the C_{3}-aryl-substituted allylic cations accounts for the different ionization profiles of $\mathbf{1 2}$ and 29. Alcohols $\mathbf{1 2}$ and $\mathbf{2 9}$ preferentially form the most stable W-type allylic cations 48 and 49. A minor ionization pathway to the sickle allylic cation $\mathbf{5 1}$ seems possible for 29; however, it is difficult to form the sickle allylic cation 50 from alcohol 12. This argument is supported by the fact that trans-enediynes 32 are obtained from 29. The competitive pathways $29 \rightarrow 49$ and $29 \rightarrow 51$ can be modulated by temperature, and higher ratios are achieved at $0{ }^{\circ} \mathrm{C}$ in favor of cis-enediynes 31. Nucleophilic attack at the allylic cations 48 and 49 possibly produces two regioisomers. We have carried out ab initio molecular orbital calculations at the RHF/3-21G level on the model compounds 54 and 55. The results reveal that enediynes $\mathbf{5 5 c} \mathbf{- f}$ are much more stable than 1,5-diynes 54c-f, perhaps as a result of the twisted orientation of the C_{3} aryl group in 54c-f. However, the energy difference between 55c,e,f and 54c,e,f decreases with increasing bulkiness of the Nu group: $\mathrm{OH}>\mathrm{MeO}>\mathrm{MeS}$. It provides the basis for understanding the diminished regioselectivity in reaction of allylic cations 48 and 49 with thiols. Calculations on the cations 58 and 59 show that the γ carbon is much more electron-deficient and is therefore much more reactive toward nucleophiles. Enhanced stability contributed from the p-MeO group for cation 49 makes it less reactive toward nucleophiles and much more regioselective compared to cation 48.

In summary, an acid-catalyzed allylic rearrangement of 3-aryl-1,2-dialkynylallyl al cohols into cis-enediynes has
been established. We have demonstrated the feasibility of this methodology for the synthesis of cyclic enediynes. ${ }^{24 b, 38}$ Our allylic rearrangement is conceptually related to the mechanism of action of maduropeptin chromophore artifacts ${ }^{10}$ and opens a novel approach to enediyne prodrug design and synthesis.

Experimental Section

General Methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} (300 or 400 MHz for ${ }^{1} \mathrm{H}$ and 75 or 100 MHz for ${ }^{13} \mathrm{C}$) with CDCl_{3} as the internal reference. IR spectra were taken on a FT-IR spectrophotometer. Mass spectra (MS) were measured by CI or FAB method. Highresol ution mass spectra (HRMS) were measured by the EI or FAB method at Kunming Institute of Botany, The Chinese Academy of Sciences. Elemental analysis was performed by the Microanalytic L aboratory of Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences. All reactions were carried out under a nitrogen atmosphere and monitored by thin-layer chromatography on $0.25-\mathrm{mm}$ E. Merck silica gel plates (60 F-254) using UV light or 7\% ethanolic phosphomolybdic acid and heating as the visualizing methods. E. Merck silica gel (60, particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials. Phenyl propargyl sulfide was synthesized according to the literature procedure. ${ }^{28}$ Other reagents were obtained commercially and used as received. Room temperature is around $20^{\circ} \mathrm{C}$.

6-Methoxy-1-hexyne. To a suspension of $60 \% \mathrm{NaH}$ $(1.17 \mathrm{~g}, 29.3 \mathrm{mmol})$ in dry THF (40 mL) cooled in an icewater bath $\left(0^{\circ} \mathrm{C}\right)$ was added hex-5-yn-1-ol ($2.00 \mathrm{~g}, 19.6$ mmol) followed by stirring at room temperature for 30 min. The resultant mixture was cooled back to $0^{\circ} \mathrm{C}$, and Mel ($2.40 \mathrm{~mL}, 39.2 \mathrm{mmol}$) was added followed by stirring at $40^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with ethyl ether (50 mL). The organic layer was washed with brine (20 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by distillation to give the product ($1.43 \mathrm{~g}, 65 \%$): colorless liquid; $b p=120-125{ }^{\circ} \mathrm{C}$; IR (neat) $2118,1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.40(\mathrm{t}, \mathrm{J}=6.34 \mathrm{~Hz}, 2 \mathrm{H}), 3.33$ ($\mathrm{s}, 3 \mathrm{H}$), $2.21(\mathrm{td}, \mathrm{J}=6.44,2.44 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, \mathrm{J}=$ $2.44 \mathrm{~Hz}, 1 \mathrm{H}$), 1.72-1.59 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 84.3,72.2,68.4,58.5,28.6,25.1,18.2 ; \mathrm{MS}(+\mathrm{Cl})$ m / z (relative intensity) 81 ($\mathrm{M}^{+}-\mathrm{MeO}, 100$).

2-Bromo-6-(phenylthio)hex-4-yn-1-en-3-ol (4). To a solution of phenyl propargyl sulfide ($0.779 \mathrm{~g}, 5.26 \mathrm{mmol}$) in dry THF (20 mL) cooled in a dry ice-acetone bath (-78 ${ }^{\circ} \mathrm{C}$) was added n-BuLi (2.5 M in hexanes, $1.91 \mathrm{~mL}, 4.79$ mmol) followed by stirring at the same temperature for 30 min to give the THF solution of $\mathrm{PhSCH}_{2} \mathrm{C} \equiv \mathrm{CLi}$. To a solution of α-bromoacrolein (3) ${ }^{27}(0.646 \mathrm{~g}, 4.79 \mathrm{mmol})$ in dry THF (20 mL) in a separate flask cooled at $-78^{\circ} \mathrm{C}$ was added the THF solution of $\mathrm{PhSCH}_{2} \mathrm{C} \equiv$ CLi prepared above. The resultant mixture was stirred at the same temperature for 1 h and quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The reaction mixture was extracted with EtOAc ($30 \times 3 \mathrm{~mL}$) and washed with brine (100 mL). The organic layer was dried over anhy-

[^8]drous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 4 ($0.563 \mathrm{~g}, 51 \%$): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.31$ (20% EtOAchexane); IR (neat) 3384, 2228, $1110 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, \mathrm{~J}=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=$ $7.32 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, J $=7.33 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (dd, J = $2.45,0.98 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}$ $=4.88 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{br} \mathrm{s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 134.7, 132.2, 130.6, 129.0, 127.1, 118.5, 83.2, 80.4, 66.9, 22.9; MS (+CI) m/z (relative intensity) $284\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 100\right), 282\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 90\right)$, 267 (M+ ${ }^{+} \mathrm{OH},{ }^{81} \mathrm{Br}, 78$), $265\left(\mathrm{M}^{+}-\mathrm{OH},{ }^{79} \mathrm{Br}, 54\right.$); HRMS (+FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OS}^{81} \mathrm{Br}\left(\mathrm{M}^{+}\right)$283.9694, found 283.9635.

11-Methoxy-5-methylidene-1-(phenylthio)undeca-2,6-diyn-4-ol (5). To a suspension of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(86.1 \mathrm{mg}$, $7.45 \times 10^{-2} \mathrm{mmol}$) and Cul ($56.8 \mathrm{mg}, 0.298 \mathrm{mmol}$) in degassed THF (25 mL) maintained at $0{ }^{\circ} \mathrm{C}$ in an icewater bath was added a solution of alcohol $4(0.421 \mathrm{~g}$, 1.49 mmol), 6-methoxy-1-hexyne ($0.250 \mathrm{~g}, 2.24 \mathrm{mmol}$), and triethylamine ($0.42 \mathrm{~mL}, 2.98 \mathrm{mmol}$) in degassed THF (70 mL) via a syringe. The reaction flask was covered against light with a sheet of aluminum foil, and the mixture was stirred at room temperature for 4 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \times 2 \mathrm{~mL})$ and extracted with EtOAc (30 mL). The organic layer was washed with brine (30 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 5 (0.447 g, 95\%): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.46$ (40% EtOAc-hexane); IR (neat) $3374,2224,1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, \mathrm{~J}=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.32 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=7.80 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1$ H), 4.82 (d, J $=5.37 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 2 \mathrm{H})$, $3.42(\mathrm{t}, \mathrm{J}=5.86 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H})$, $2.38(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.1,131.5,130.3,128.9,126.9$, 120.6, 93.1, 82.5, 81.8, 76.8, 72.2, 65.2, 58.5, 28.7, 25.2, 23.0, 19.2; $\mathrm{MS}(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $332(\mathrm{M}+$ $\left.\mathrm{NH}_{4}{ }^{+}, 100\right)$; HRMS (+FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 315.1419, found 315.1486.
(Z)- α-Bromocrotonaldehyde (7). To a solution of trans-crotonal dehyde ($5.92 \mathrm{~mL}, 71.4 \mathrm{mmol}$) in dry $\mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}(100 \mathrm{~mL})$ cooled in an ice-water bath $\left(0^{\circ} \mathrm{C}\right)$ was added bromine ($3.7 \mathrm{~mL}, 71.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ followed by stirring at room temperature for 1 h . Triethylamine ($12 \mathrm{~mL}, 86.1 \mathrm{mmol}$) was added, and the mixture was allowed to stir at room temperature for 1 h. The reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$, and the organic layer was washed with brine (10 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by vacuum distillation to give the product 7 ($7.76 \mathrm{~g}, 72 \%$): $\mathrm{bp}=134-135{ }^{\circ} \mathrm{C} / \sim 0.1 \mathrm{mmHg}$; pale yellow liquid; IR (neat) 1698, $1624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.21$ ($\mathrm{s}, 1 \mathrm{H}$), $7.25(\mathrm{q}, \mathrm{J}=6.84 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=6.84 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.0,150.7,130.2$, 17.9; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $151\left(\mathrm{M}+\mathrm{H}^{+},{ }^{81} \mathrm{Br}\right.$, 58), 149 ($\mathrm{M}+\mathrm{H}^{+},{ }^{79} \mathrm{Br}, 91$).
(E)-2-Ethylidene-8-methoxyoct-3-ynal (8). To a suspension of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(194.0 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathrm{Cul}(0.13$ $\mathrm{g}, 0.67 \mathrm{mmol})$ in degassed THF (30 mL) maintained at 0 ${ }^{\circ} \mathrm{C}$ in an ice-water bath was added a solution of (Z)- α bromocrotonaldehyde (7, $0.50 \mathrm{~g}, 3.36 \mathrm{mmol}$), 6-methoxy-

1-hexyne ($0.56 \mathrm{~g}, 5.03 \mathrm{mmol}$), and triethylamine (0.70 $\mathrm{mL}, 5.03 \mathrm{mmol}$) in degassed THF (40 mL) via a syringe. The reaction flask was covered against light with a sheet of aluminum foil, and the mixture was stirred at room temperature for 5 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with EtOAc (60 mL). The organic layer was washed with brine (20 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 8 ($59.3 \mathrm{mg}, 10 \%$): pale yell ow oil; $\mathrm{R}_{\mathrm{f}}=0.58$ (20% EtOAc-hexane); IR (neat) 2230, 1700, 1616, $1216 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{q}, \mathrm{J}=$ $6.98 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=6.05 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, $2.50(\mathrm{t}, \mathrm{J}=6.62 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~d}, \mathrm{~J}=7.05 \mathrm{~Hz}, 3 \mathrm{H})$, $1.77-1.64(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 190.9, 155.1, 129.7, 100.2, 72.1, 72.0, 58.5, 28.7, 25.2, 19.4, 16.9; MS (+CI) m/z (relative intensity) 149(M ${ }^{+}$- OMe, 100).
(()-5-Ethylidene-11-methoxy-1-(phenylthio)unde-ca-2,6-diyn-4-ol (9). To a solution of phenyl propargyl sulfide ($74.8 \mathrm{mg}, 0.51 \mathrm{mmol}$) in dry THF (3 mL) cooled in an acetone bath maintained at $-80^{\circ} \mathrm{C}$ by a chiller was added $\mathrm{n}-\mathrm{BuLi}$ (1.6 M in hexanes, $0.35 \mathrm{~mL}, 0.51 \mathrm{mmol}$) followed by stirring at the same temperature for 30 min to give the THF solution of $\mathrm{PhSCH}_{2} \mathrm{C} \equiv \mathrm{CLi}$. Toa solution of aldehyde $8(70 \mathrm{mg}, 0.39 \mathrm{mmol})$ in dry THF (3 mL) in a separate flask cooled at $-80^{\circ} \mathrm{C}$ was added the THF solution of $\mathrm{PhSCH}_{2} \mathrm{C} \equiv \mathrm{CLi}$ prepared above. The resultant mixture was stirred at the same temperature for 1 h and quenched with a methanolic solution of acetic acid (31 mg of acetic acid in 0.5 mL MeOH). The reaction mixture was diluted with EtOAc (10 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was washed with brine (2 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 10% EtOAc-hexane) to give 9 (79.2 $\mathrm{mg}, 62 \%$): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.30$ (20% EtOAchexane); IR (neat) 3380, 2220, $1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H})$, $6.02(\mathrm{q}, \mathrm{J}=6.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=6.54 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=6.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, $2.56(\mathrm{~d}, \mathrm{~J}=7.08 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=6.69 \mathrm{~Hz}, 2 \mathrm{H})$, $1.83(\mathrm{~d}, \mathrm{~J}=6.78 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 135.1, 132.7, 130.2, 128.8, 126.8, 124.6, 96.9, 82.2, 75.8, 72.1, 65.4, 58.3, 28.6, 25.3, 22.9, 19.3, 15.7; MS (+CI) m/z (relative intensity) 346 ($\mathrm{M}+$ $\mathrm{NH}_{4}{ }^{+}, 100$).
(E)-8-Methoxy-2-(phenylmethylidene)oct-3-ynal (11). To a suspension of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.27 \mathrm{~g}, 0.23 \mathrm{mmol})$ and $\mathrm{Cul}(0.18 \mathrm{~g}, 0.95 \mathrm{mmol})$ in degassed THF (20 mL) maintained at $0{ }^{\circ} \mathrm{C}$ in an ice-water bath was added a solution of α-bromocinnamaldehyde ($\mathbf{1 0}, 1.02 \mathrm{~g}, 4.83$ mmol), 6 -methoxy-1-hexyne ($417 \mathrm{mg}, 3.72 \mathrm{mmol}$), and triethylamine ($1.30 \mathrm{~mL}, 9.30 \mathrm{mmol}$) in degassed THF (30 mL) via a syringe. The reaction flask was covered against light by a sheet of aluminum foil, and the mixture was stirred at room temperature for 2 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with EtOAc (60 mL). The organic layer was washed with brine (20 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 20% EtOAc-hexane) to give $\mathbf{1 1}$ ($811 \mathrm{mg}, 90 \%$): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.55$ (25% EtOAc-hexane); IR (neat) 2250, 1692, $1602,1116 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53$ ($\mathrm{s}, 1$
H), 8.08-8.05 (m, 2 H), 7.44-7.42 (m, 3 H), $7.40(\mathrm{~s}, 1 \mathrm{H})$, $3.41(\mathrm{t}, \mathrm{J}=5.86 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=6.59$ $\mathrm{Hz}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.6,151.0,134.1,131.2,130.3,128.6,123.3,102.9$, 74.5, 72.0, 58.4, 28.7, 25.0, 19.8; MS (+CI) m/z (relative intensity) 243 ($\mathrm{M}+\mathrm{H}^{+}, 100$).
(E)-11-Methoxy-5-phenylmethylidene-1-(phenyl-thio)undeca-2,6-diyn-4-ol (12). To a solution of aldehyde $11(2.80 \mathrm{~g}, 11.6 \mathrm{mmol})$ in dry THF (70 mL) cooled at $-80{ }^{\circ} \mathrm{C}$ was added a THF (30 mL) solution of $\mathrm{PhSCH}_{2} \mathrm{C} \equiv \mathrm{CLi}$ prepared from phenyl propargyl sulfide ($2.20 \mathrm{~g}, 15.0 \mathrm{mmol}$) and n-BuLi (1.44 M in hexanes, 10 $\mathrm{mL}, 15.0 \mathrm{mmol})$. The reaction was stirred at the same temperature for 1 h and quenched with a methanolic solution of acetic acid (0.9 g of acetic acid in 5 mL MeOH). The resultant mixture was extracted with EtOAc (50 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 10\% EtOAc-hexane) to give 12 ($3.50 \mathrm{~g}, 79 \%$): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.17$ (20\% EtOAc-hexane); IR (neat) 3380, 2218, $1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, \mathrm{~J}=6.84 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.75(\mathrm{~s}, 1$ $\mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $6.11 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~d}, \mathrm{~J}=7.81 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{t}, \mathrm{J}=6.59 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,135.1,133.7,130.3,128.9$, 128.7, 128.4, 128.1, 126.9, 122.0, 99.5, 82.7, 82.2, 77.6, 72.1, 66.9, 58.5, 28.6, 25.1, 23.1, 19.7; MS (+CI) m/z (relative intensity) $390\left(\mathrm{M}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 76.89 ; \mathrm{H}, 6.71$. Found: C, 76.78; H, 6.88.
Acid-Catalyzed Isomerization of 12. (E)-8-Meth-oxy-1-phenyl-2-[4'-phenylthio(but-2'-ynylidene)]oct-3-yn-1-ol (13), (Z)-8-Methoxy-1-phenyl-2-[4'-phenyl-thio(but-2'-ynylidene)]oct-3-yn-1-ol (14), and (Z)-11-Methoxy-5-phenylmethylidene-1-(phenylthio)un-deca-2,6-diyn-4-ol (15). To a solution of 12 ($198 \mathrm{mg}, 0.50$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added CSA (111 mg , 0.50 mmol) followed by stirring at room temperature for 16 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and brine (2 mL). The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 10\% EtOAc-hexane) to give $\mathbf{1 3}$ ($111 \mathrm{mg}, 56 \%$) and a mixture of $\mathbf{1 4}$ and $\mathbf{1 5}$ (14: $15=34: 66,52 \mathrm{mg}, 26 \%)$. 13: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.32$ (20\% EtOAc-hexane); IR (neat) 3414, 2208, 1116, 1084 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, \mathrm{~J}=7.32 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 8 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=3.90$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, \mathrm{J}=6.10 \mathrm{~Hz}$, $2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=6.35 \mathrm{~Hz}, 2$ $\mathrm{H}), 1.59-1.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.1, 137.6, 135.5, 129.8, 128.9, 128.4, 128.0, 126.6, 113.3, 110.4, 91.8, 81.1, 76.2, 72.1, 58.5, 28.5, 25.0, 23.9, 19.5; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $408\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 76.89 ; \mathrm{H}, 6.71$. Found: C, 76.81; H, 6.67. 14: colorless oil; $\mathrm{R}_{\mathrm{f}}=0.52(20 \%$ EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.24$ (m, 2 H), 7.32-7.19 (m, 8 H$), 6.00(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H})$, $3.80(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=6.35$ $\mathrm{Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, \mathrm{J}=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 4 \mathrm{H})$. 15: colorless oil; $\mathrm{R}_{\mathrm{f}}=0.52$ (20\% EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.19$
$(\mathrm{m}, 8 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=2.44 \mathrm{~Hz}$, 2 H), 3.29 (t, J $=6.84 \mathrm{~Hz}, 2 \mathrm{H}$), 3.27 ($\mathrm{s}, 3 \mathrm{H}$), 2.28 (t, J = $6.60 \mathrm{~Hz}, 2 \mathrm{H}$), 1.57-1.42 (m, 4 H).

Acid-Catalyzed Isomerization of 12 or 13 in the Presence of Nucleophiles. Typical Procedure. (E)-5-(1'-Ethoxy-1'-phenyl)methyl-11-methoxy-1-(phen-ylthio)undeca-2,6-diyn-4-ene (16b) and (E)-4-E thoxy-11-methoxy-5-phenylmethylidene-1-(phenylthio)-undeca-2,6-diyne (17b). To a solution of $\mathbf{1 2}$ ($0.15 \mathrm{~g}, 0.38$ mmol) and EtOH ($44 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5 mL) was added CSA ($87 \mathrm{mg}, 0.39 \mathrm{mmol}, 0.16 \mathrm{M}$). The mixture was stirred for 3 h at room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue over silica gel provided 16b (114 mg , 71%) and $\mathbf{1 7 b}$ ($3.0 \mathrm{mg}, 3 \%$). The reaction conditions, yield, and product distribution are summarized in Table 1. 16b: pale yellow oil; $R_{f}=0.56$ (20\% EtOAc-hexane); IR $\left(\mathrm{CDCl}_{3}\right) 2246,1114 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.38(\mathrm{~d}, \mathrm{~J}=7.33 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.11(\mathrm{~m}, 8 \mathrm{H}), 5.94(\mathrm{~s}, 1$ $\mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=1.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.43$ (m, 1 H), 3.40-3.32 (m, 1 H), 3.24 (t, J $=6.30 \mathrm{~Hz}, 2 \mathrm{H}$), $3.22(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{t}, \mathrm{J}=6.59 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 4$ $\mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=6.25 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.9, 136.6, 135.6, 129.7, 128.8, 128.1, 127.7, 127.1, 126.5, 113.0, 99.5, 91.4, 83.3, 81.3, 77.9, 72.1, 64.6, 58.5, 28.5, 25.0, 23.8, 19.4, 15.2; MS (+CI) m/z (relative intensity) $436\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 76); HRMS (+EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right) 418.1966$, found 418.1945. 17b: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.48$ (20% EtOAc-hexane); IR $\left(\mathrm{CDCl}_{3}\right)$ $2248,1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, \mathrm{~J}$ $=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.18(\mathrm{~m}, 6 \mathrm{H})$, 6.83 (s, 1 H), $4.70(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H})$, $3.60-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=6.00$ $\mathrm{Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-$ $1.60(\mathrm{~m}, 4 \mathrm{H}), 1.25$ and $1.22(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 135.8,135.2,134.6,130.3$, $128.9,128.8,128.3,128.1,126.8,120.1,98.5,83.2,80.6$, 78.4, 77.3, 73.6, 72.2, 63.7, 58.5, 28.8, 25.2, 23.1, 19.8, 15.1; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $436\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 100).
(E)-11-Methoxy-5-(1'-methoxy-1'-phenyl)methyl-1-(phenylthio)undeca-2,6-diyn-4-ene (16a). Pale yellow oil; $R_{f}=0.66$ (20% EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, \mathrm{~J}=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 8 \mathrm{H})$, 6.02 (s, 1 H), 4.66 ($\mathrm{s}, 1 \mathrm{H}$), 3.85 (s, 2 H), 3.37 ($\mathrm{s}, 3 \mathrm{H}$), $3.35(\mathrm{t}, \mathrm{J}=6.10 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=6.59$ $\mathrm{Hz}, 2 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.4, 136.1, 135.6, 129.7, 128.9, 128.2, 127.9, 127.0, 126.6, 113.4, 99.6, 91.5, 85.3, 81.2, 77.7, 72.2, 58.5, 57.0, 28.5, 25.0, 23.8, 19.5.
(E)-5-(1'-I sopropyloxy-1'-phenyl)methyl-11-meth-oxy-1-(phenylthio)undeca-2,6-diyn-4-ene (16c). Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.73$ (20\% EtOAc-hexane); IR (neat) 2222, 2174, 1120, cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ $(\mathrm{d}, \mathrm{J}=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.34(\mathrm{~m}, 8 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H})$, 4.85 (s, 1 H), 3.80 (d, J $=2.45 \mathrm{~Hz}, 2 \mathrm{H}$), 3.34 (sept, J = $6.34 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31 (t, J $=6.35 \mathrm{~Hz}, 2 \mathrm{H}$), 3.28 ($\mathrm{s}, 3 \mathrm{H}$), 2.31 (t, J $=6.84 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48$ (m, 2 H), $1.18(\mathrm{~d}, \mathrm{~J}=5.86 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.34 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,137.1,135.6$, 129.6, 128.8, 128.1, 127.6, 127.1, 126.6, 113.0, 99.4, 91.3, 81.3, 80.5, 78.1, 72.1, 69.5, 58.4, 28.5, 25.0, 23.8, 22.2,
22.0, 19.4. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 77.74 ; \mathrm{H}, 7.46$. Found: C, 77.87; H, 7.40.
(E)-5-(1'-E thylthio-1'-phenyl)methyl-11-methoxy-1-(phenylthio)undeca-2,6-diyn-4-ene (16d). Obtained as the major component in a 67:33 mixture with 17d. Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.42$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$-hexane); IR (neat) $2220,1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.12$ $(\mathrm{m}, 10 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=1.96$ Hz, 2 H), 3.25 (t, J = $6.20 \mathrm{~Hz}, 2 \mathrm{H}$), 3.22 (s, 3 H), 2.40 (q , $\mathrm{J}=7.44 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.46$ $(\mathrm{m}, 4 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.60 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 139.1,135.7,134.1,129.7,128.8,128.6,128.3$, 128.2, 126.6, 114.5, 99.5, 91.4, 81.3, 78.4, 72.1, 58.4, 54.7, 28.5, 26.1, 25.0, 23.8, 19.5, 14.1; MS (+CI) m/z (relative intensity) $435\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS (+EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{OS}_{2}\left(\mathrm{M}^{+}\right) 434.1738$, found 434.1730 .
(E)-5-(1'-tert-Butylthio-1'-phenyl)methyl-11-meth-oxy-1-(phenylthio)undeca-2,6-diyn-4-ene (16e). Obtained as the major component in a 73:27 mixture with 17e. Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.66$ (10\% EtOAc-hexane); IR $\left(\mathrm{CDCl}_{3}\right) 2246,1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.69-7.10 (m, 10 H), 5.92 (s, 1 H), 4.48 ($\mathrm{s}, 1 \mathrm{H}$), 3.73 (d, $\mathrm{J}=2.44 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=6.35 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3$ H), 2.30 (t, J $=6.84 \mathrm{~Hz}, 2 \mathrm{H}$), 1.68-1.50 (m, 4 H), 1.23 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,137.5,134.1$, 129.7, 128.9, 128.5, 128.3, 128.2, 126.6, 114.4, 99.4, 91.5, 81.5, 79.1, 72.2, 58.5, 52.8, 44.6, 31.2, 28.6, 25.1, 23.9, 19.5; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $480\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 100).
(E)-11-Methoxy-5-(1'-phenyl-1'-phenylthio)methyl-1-(phenylthio)undeca-2,6-diyn-4-ene (16f). Obtained as the major component in a 69:31 mixture with 17f. Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.29$ (10\% $\mathrm{Et}_{2} \mathrm{O}$-hexane); IR (neat) 2218, $1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.16$ (m, 15 H), 5.83 ($\mathrm{s}, 1 \mathrm{H}$), $4.84(\mathrm{~s}, 1 \mathrm{H}), 3.78$ (d, J $=2.44 \mathrm{~Hz}, 2$ $\mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=6.35 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=$ $6.59 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.53(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ (aromatic carbons cannot be assigned) 115.1, 99.9, 91.7, 81.3, 78.5, 72.2, 58.5, 47.4, 28.8, 25.1, 23.9, 19.7; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $500\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 100). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{OS}_{2}$: C, 77.14; H, 6.26. Found: C, 76.94; H, 6.07.
(E)-4,11-Dimethoxy-5-phenylmethylidene-1-(phen-ylthio)undeca-2,6-diyne (17a). Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=$ 0.63 (20\% EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.80 \mathrm{~Hz}, 2 \mathrm{H})$, 7.28-7.11 (m, 6 H), 6.76 (s, 1 H), 4.56 (s, 1 H), 3.66 (s, 2 $\mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=6.10 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, $2.41(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 4 \mathrm{H})$.
(E)-4-I sopropyloxy-11-methoxy-5-phenylmeth-ylidene-1-(phenylthio)undeca-2,6-diyne (17c). Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.70$ (20\% EtOAc-hexane); IR (neat) 2219, 1118, $1076 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82$ (d, J $=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-$ 7.17 (m, 6 H), $6.84(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{sept}, \mathrm{J}=$ $6.34 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=2.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=6.2$ Hz, 2 H), 3.32 (s, 3 H), 2.47 (t, J $=6.80 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76$1.65(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.35 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=$ $5.86 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.9,135.2$, 134.2, 130.2, 128.9, 128.8, 128.2, 128.0, 126.8, 120.7, 98.3, 82.5, 81.3, 78.6, 72.2, 71.3, 69.9, 58.5, 28.8, 25.2, 23.2, 22.5, 22.0, 19.7.
(E)-4-Ethylthio-11-methoxy-5-phenylmethylidene-1-(phenylthio)undeca-2,6-diyne (17d). Obtained as the minor component in a 67:33 mixture with 16d. Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.42$ (10\% $\mathrm{Et}_{2} \mathrm{O}$-hexane); IR (neat) 2220,
$1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, \mathrm{~J}=7.60$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40-7.12(\mathrm{~m}, 8 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H})$, 3.67 ($\mathrm{d}, \mathrm{J}=2.40 \mathrm{~Hz}, 2 \mathrm{H}$), $3.32(\mathrm{t}$, J $=6.20 \mathrm{~Hz}, 2 \mathrm{H}$,), 3.23 (s, 3H), 2.60-2.40(m, 2 H), $2.29(\mathrm{t}, \mathrm{J}=6.80 \mathrm{~Hz}, 2$ $\mathrm{H}), 1.68-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.60 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.5,135.2,134.1,129.9$, 128.9, 128.2, 128.0, 127.4, 126.7, 119.5, 98.0, 82.7, 80.1, 78.9, 72.1, 58.4, 42.4, 28.7, 25.0, 24.8, 23.1, 19.6, 14.1; MS (+Cl) m/z (relative intensity) 435 ($\mathrm{M}+\mathrm{H}^{+}, 100$); HRMS (+EI) cal cd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{OS}_{2}\left(\mathrm{M}^{+}\right) 434.1738$, found 434.1730.
(E)-4-tert-Butylthio-11-methoxy-5-phenylmeth-ylidene-1-(phenylthio)undeca-5,9-diyne (17e). Obtained as the minor component in a 73:27 mixture with 16e. Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.66$ (10% EtOAc-hexane); IR $\left(\mathrm{CDCl}_{3}\right) 2246,1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.68 (d, J $=7.32 \mathrm{~Hz}, 2 \mathrm{H}$), $7.69-7.10(\mathrm{~m}, 8 \mathrm{H}), 6.78$ (s, 1 $\mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=$ $6.35 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 2 \mathrm{H})$, 1.68-1.50 (m, 4 H$), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 135.9,135.6,135.3,129.9,128.8,128.2,128.0$, 127.1, 126.6, 120.3, 97.8, 82.7, 81.7, 79.3, 72.2, 58.4, 44.7, 40.3, 31.0, 28.8, 23.2, 19.6; MS (+CI) m/z (relative intensity) $480\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100\right)$.
(E)-11-Methoxy-1,4-di (phenylthio)-5-(phenylmeth-ylidene)undeca-2,6-diyne (17f). Obtained as the minor compounent in a 69:31 mixture with 16f. Pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.29$ ($10 \% \mathrm{Et}_{2} \mathrm{O}$-hexane); IR (neat) $2218,1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 2 \mathrm{H})$, 7.49-7.16 (m, 13 H$), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}$, $\mathrm{J}=2.44 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=6.10 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3$ $\mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.50(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (aromatic carbons cannot be assigned) 119.0, 98.0, 83.4, 80.2, 78.9, 72.2, 58.9, 47.4, 28.6, 25.1, 23.0, 19.5; MS (+CI) m/z (relative intensity) $500\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{OS}_{2}$: C , 77.14; H, 6.26. Found: C, 76.94; H, 6.07.
(E)-10-Methoxy-4-phenylmethylidene-1-phenyl-deca-1,5-diyn-3-ol (18c). To a solution of aldehyde 11 $(0.380 \mathrm{~g}, 1.57 \mathrm{mmol})$ in dry THF (8 mL) cooled at $-80^{\circ} \mathrm{C}$ was added a THF (7 mL) solution of $\mathrm{PhC} \equiv$ CLi prepared from phenylacetylene ($0.21 \mathrm{~mL}, 1.88 \mathrm{mmol}$) and n-BuLi (1.6 M in hexanes, $1.1 \mathrm{~mL}, 1.76 \mathrm{mmol}$). The reaction was stirred at the same temperature for 30 min and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resultant mixture was extracted with EtOAc (50 mL) and washed with brine (20 mL). The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 18c ($0.415 \mathrm{~g}, 80 \%$): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.18$ (20% EtOAc-hexane); IR (neat) $3368,2198,1118 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, \mathrm{~J}=7.32 \mathrm{~Hz}, 2 \mathrm{H})$, 7.42-7.40 (m, 2 H), 7.30-7.19 (m, 6 H), 6.86 (s, 1 H), $5.12(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, 2.77 (br s, 1 H$), 2.47(\mathrm{t}, \mathrm{J}=6.35 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.61(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,133.7,131.8$, 128.7, 128.5, 128.4, 128.2, 128.1, 122.5, 122.2, 99.5, 87.8, 86.4, 77.7, 72.1, 67.4, 58.5, 28.7, 25.2, 19.7; MS (+FAB) m / z (relative intensity) 327 ($\mathrm{M}^{+}-\mathrm{OH}, 56$); HRMS (+FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 344.1776$, found 344.1775.

Acid-Catalyzed I somerization of 18a-c. (E)-4-(1'-Ethoxy-1'-phenyl)methyl-7-phenylthio-1-(trimethyl-silyl)hept-1,5-diyn-3-ene (19a). To a solution of 18a24a ($71.7 \mathrm{mg}, 0.19 \mathrm{mmol}$) and EtOH ($44 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added CSA ($22.1 \mathrm{mg}, 9.5 \times 10^{-2}$
mmol, 48 mM). The mixture was stirred at room temperature for 93 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue (silica gel, $10 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) provided an inseparable mixture of 19a and 20a (19a:20a $=94: 6,53.9 \mathrm{mg}, 70 \%)$. 19a: pale yellow oil; $R_{f}=0.77$ (20\% EtOAc in hexane); IR (neat) 2132, 1094, $1072 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ $(\mathrm{d}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 8 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H})$, 4.71 (s, 1 H), 3.75 (s, 2 H), 3.53-3.39 (m, 2 H), 1.20 (t, J $=6.80 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.5, 136.7, 135.4, 130.1, 128.9, 128.2, 127.8, 127.0, 126.7, 114.6, 102.3, 102.1, 94.8, 83.0, 80.3, 64.7, 23.8, 15.2, -0.1; $\mathrm{MS}(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) 405 ($\mathrm{M}+$ $\left.\mathrm{H}^{+}, 10\right), 359$ (M^{+}- EtO, 100).
(E)-4-(1'-E thoxy-1'-phenyl)methyl-7-phenylthio-1-phenylhept-1,5-diyn-3-ene (19b). To a solution of $\mathbf{1 8 b}{ }^{24 a}(64.4 \mathrm{mg}, 0.17 \mathrm{mmol})$ and EtOH ($40 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added CSA (19.7 mg, $8.5 \times$ $\left.10^{-2} \mathrm{mmol}, 43 \mathrm{mM}\right)$. The mixture was stirred at room temperature for 45 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue (silica gel, $10 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) provided 19b ($56.4 \mathrm{mg}, 82 \%$): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.80$ (20% EtOAc-hexane); IR (neat) 2194, 1098, $1072 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.48-7.23(\mathrm{~m}, 15 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $2 \mathrm{H}), 3.64-3.47(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=6.96 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,135.4,131.8,130.0,128.9$, 128.4, 128.3, 128.2, 127.8, 127.0, 126.7, 123.2, 114.9, 96.4, 94.8, 87.2, 83.2, 80.6, 64.7, 23.9, 15.2; MS (+CI) m/z (relative intensity) $426\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 24\right), 363\left(\mathrm{M}^{+}-\mathrm{EtO}\right.$, 100).
(E)-4-(1'-E thoxy-1'-phenyl)methyl-10-methoxy-1-phenyldeca-1,5-diyn-3-ene (19c). To a solution of 18c ($128 \mathrm{mg}, 0.37 \mathrm{mmol}$) and EtOH ($44 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added CSA ($86 \mathrm{mg}, 0.37 \mathrm{mmol}$, $62 \mathrm{mM})$. The mixture was stirred at room temperature for 2 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) and washed with saturated aqueous NaHCO_{3} (4 mL). The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue (silica gel, $20 \% \mathrm{Et}_{2} \mathrm{O}-$ hexane) provided 19c ($90.3 \mathrm{mg}, 65 \%$): pale yellow oil; R_{f} $=0.49$ (20% EtOAc-hexane); IR (neat) 2220, $1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.25$ (s, 1 H$), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{dq}, \mathrm{J}=9.03,6.84 \mathrm{~Hz}, 1 \mathrm{H})$, 3.49 (dq, J $=9.28,6.84 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, \mathrm{J}=5.86 \mathrm{~Hz}, 2$ H), $3.28(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60$ $(\mathrm{m}, 4 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 140.0,136.4,131.6,128.2,127.8,127.1,123.5$, 113.4, 100.1, 95.5, 87.5, 83.5, 78.2, 72.1, 64.7, 58.5, 28.5, 25.2, 19.6, 15.2; MS (+CI) m/z (relative intensity) 373 ($\mathrm{M}^{+}+1,10$), 327 (M^{+}- EtO, 100); HRMS (+FAB) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$372.2089, found 372.2034.
Methyl (E)-4-Methoxycinnamate (22). To a solution of trimethyl phosphonoacetate ($3.93 \mathrm{~g}, 21.6 \mathrm{mmol}$) in dry THF (150 mL) cooled in a dry ice-acetone bath $\left(-78{ }^{\circ} \mathrm{C}\right)$ was added n-BuLi (1.6 M in hexanes, 14.8 mL , 23.7 mmol) followed by stirring for 30 min . To the resultant mixture was added p-anisaldehyde (21, $2.89 \mathrm{~mL}, 23.7$ mmol) in dry THF (50 mL) at $-78^{\circ} \mathrm{C}$, and the reaction
was allowed to warm to room temperature. After 5 h of stirring at room temperature, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with EtOAc $(60 \times 2 \mathrm{~mL})$. The organic layer was washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 10\% EtOAchexane) to give 22 ($4.15 \mathrm{~g}, 100 \%$): white solid; $\mathrm{R}_{\mathrm{f}}=0.41$ (10\% EtOAc-hexane); IR (Nujol) 1716, 1638, $1176 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=16.01 \mathrm{~Hz}, 1$ H), 7.51-7.45 (AA'BB', $2 H$), 6.93-6.87 (AA'BB', $2 H$), $6.31(\mathrm{~d}, \mathrm{~J}=16.01 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,161.4,144.5,129.7$, 127.1, 115.2, 114.3, 55.3, 51.3; MS (+CI) m/z (relative intensity) 193 ($\mathrm{M}+\mathrm{H}^{+}, 58$).

Methyl (Z)- α-Bromo-4-methoxycinnamate (23) and Methyl (E)- α-Bromo-4-methoxycinnamate (24). To a solution of ester 22 ($4.15 \mathrm{~g}, 21.6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ cooled in a dry ice-acetone bath $\left(-78^{\circ} \mathrm{C}\right)$ was added bromine ($1.12 \mathrm{~mL}, 21.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ followed by stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Triethylamine (3.65 $\mathrm{mL}, 25.9 \mathrm{mmol}$) was added, and the mixture was allowed to stir at room temperature overnight (16 h). The reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ and the organic layer was washed with brine (20 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 5\% EtOAc-hexane) to give the product 23 and 24 as an inseparable mixture (23:24 $=77: 23,4.66 \mathrm{~g}, 80 \%$): white solid; $\mathrm{R}_{\mathrm{f}}=0.46$ (10% EtOAc-hexane). 23: IR (Nujol) 1720, 1604, $1176 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (s, 1 H), 7.31-7.25 (AA'BB', 2 H), 6.89-6.83 (AÁB', 2 H), 3.82 (s, 3 H), 3.79 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,160.2$, 140.2, 130.1, 127.1, 113.8, 108.5, 55.2, 52.8; MS (+CI) m / z (relative intensity) $290\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+},{ }^{81} \mathrm{Br}, 98\right.$), 288 (M $\left.+\mathrm{NH}_{4}{ }^{+},{ }^{79} \mathrm{Br}, 100\right)$. Anal. Cal cd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{3}: \mathrm{C}, 48.73$; H, 4.09. Found: C, 48.64; H, 4.05. 24: IR (Nujol) 1720, 1604, $1176 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (s, 1 H), 7.94-7.88 (AA'BB', 2 H), 6.99-6.93 (AA'BB', 2 H), 3.89 (s, 3 H), $3.85(\mathrm{~s}, 3 \mathrm{H})$; $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.9, 160.2, 140.2, 130.1, 127.1, 113.8, 108.5, 55.2, 52.8; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $290\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+},{ }^{81} \mathrm{Br}\right.$, 98), 288 ($\mathrm{M}+\mathrm{NH}_{4}{ }^{+},{ }^{79} \mathrm{Br}, 100$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{-}$ $\mathrm{BrO}_{3}: \mathrm{C}, 48.73 ; \mathrm{H}, 4.09$. Found: C, 48.64; $\mathrm{H}, 4.05$.

Methyl (E)-8-Methoxy-2-[(4'-methoxyphenyl)meth-ylidene]oct-3-ynoate (25) and Methyl (Z)-8-Meth-oxy-2-[(4'-methoxyphenyl)methylidene]oct-3ynoate (26). To a suspension of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (124.4 mg , 0.10 mmol) and Cul ($61 \mathrm{mg}, 0.32 \mathrm{mmol}$) in degassed THF (3 mL) maintained at $0^{\circ} \mathrm{C}$ in an ice-water bath was added a solution of the mixture of $\mathbf{2 3}$ and $\mathbf{2 4}$ prepared above ($541.8 \mathrm{mg}, 2.00 \mathrm{mmol}$), 6-methoxy-1-hexyne (268.8 $\mathrm{mg}, 2.40 \mathrm{mmol}$), and triethylamine ($0.42 \mathrm{~mL}, 3.00 \mathrm{mmol}$) in degassed THF (4 mL) via a syringe. The reaction flask was covered against light by a sheet of aluminum foil, and the mixture was stirred at room temperature for 22 h. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with EtOAc (100 mL). The organic layer was washed with brine (25 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, $5 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) to give an inseparable mixture of 25 and 26 ($\mathbf{2 5 : 2 6}=76: 24,523.4 \mathrm{mg}, \mathbf{8 7 \%}$): pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.23$ (10% EtOAc-hexane). 25: IR (neat) 2218, 1726, 1606, 1178, $1118 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.31\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.05(\mathrm{~s}, 1 \mathrm{H})$, 6.83-6.77 (AA'BB', 2 H), 3.81 (s, 3 H), 3.76 (s, 3 H), 3.41 $(\mathrm{t}, \mathrm{J}=6.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=6.60 \mathrm{~Hz}$, $2 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.7, 160.2, 142.9, 130.6, 127.2, 114.1, 113.7, 91.8, 78.8, 72.2, 58.5, 55.2, 52.2, 28.7, 25.2, 19.3; MS (+CI) m/z (relative intensity) $303\left(\mathrm{M}+\mathrm{H}^{+}, 56\right), 271\left(\mathrm{M}^{+}-\mathrm{MeO}\right.$, 100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$: C, $71.50 ; \mathrm{H}, 7.33$; Found: C, 71.58; H, 7.40. 26: IR (neat) 2218, 1726, 1606, $1178,1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-7.98$ (AA'BB', 2 H), $7.80(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.89\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}\right)$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=6.32 \mathrm{~Hz}, 2 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 4$ $\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,161.2,144.3$, 132.1, 127.4, 113.8, 110.5, 99.1, 76.8, 72.1, 58.5, 55.3, 52.5, 28.8, 25.1, 19.9; MS (+CI) m/z (relative intensity) $303\left(\mathrm{M}+\mathrm{H}^{+}, 56\right), 271\left(\mathrm{M}^{+}-\mathrm{MeO}, 100\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 71.50; H, 7.33. Found: C, 71.58; H, 7.40.
(E)-8-Methoxy-2-[(4'-methoxyphenyl)methylidene]-oct-3-ynal (27) and (Z)-8-Methoxy-2-[(4'-methoxy-phenyl)methylidene]oct-3-ynal (28). To a solution of 25 and $\mathbf{2 6}$ prepared above ($460.6 \mathrm{mg}, 1.53 \mathrm{mmol}$) in dry toluene (20 mL) cooled in a dry ice-acetone bath (-78 ${ }^{\circ} \mathrm{C}$) was added DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.81 \mathrm{~mL}, 3.81$ mmol) followed by stirring at the same temperature for 1 h . The reaction was quenched by $\mathrm{MeOH}(3 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ and stirred for 30 min . Aqueous $5 \% \mathrm{HCl}(35 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature for another 40 min . The mixture was extracted with EtOAc ($30 \times 2 \mathrm{~mL}$), washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give an inseparable mixture of the alcohols (major:minor $=71$: $29,365.0 \mathrm{mg}, 87 \%$) as a pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.18$ (20% EtOAc-hexane). Major isomer: IR (neat) 3414, 1178, $1116 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.15$ (AA'BB', 2 H), 6.90-6.84 (AA'BB', 2 H), 6.83 (s, 1 H), $4.32(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=6.01 \mathrm{~Hz}, 2 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=6.61 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 4$ $\mathrm{H})$; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $275\left(\mathrm{M}+\mathrm{H}^{+}, 50\right)$; 257 (M+ ${ }^{+} \mathrm{OH}, 100$); HRMS (+EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 274.1569, found 274.1579. Minor isomer: IR (neat) 3414, 1178, $1116 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.82-7.76 (AA'BB', 2 H), 6.90-6.84 (AA'BB', 2 H), 6.62 (s, 1 H), $4.22(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=6.01 \mathrm{~Hz}$, $2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=6.61 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.62$ (m, 4 H); MS (+CI) m/z (relative intensity) $275\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 50); 257 (M ${ }^{+}-\mathrm{OH}, 100$); HRMS (+EI) cal cd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$ $\left(\mathrm{M}^{+}\right)$274.1569, found 274.1579.

To a solution of the al cohols prepared above (239.3 mg , $0.87 \mathrm{mmol})$ in dry THF (20 mL) cooled in an ice-water bath ($0^{\circ} \mathrm{C}$) was added PDC ($320 \mathrm{mg}, 1.14 \mathrm{mmol}$) and some powdered $4 \AA$ molecular sieves followed by stirring at room temperature for 4.5 h . The reaction mixture was filtered through a short plug of silica gel with rinsing by EtOAc. The combined organic layer was concentrated in vacuo, and the residue was purified by flash column chromatography (silica gel, 10\% EtOAc-hexane) to give 25.3 mg of the starting alcohols (10.6\%) and a mixture of aldehydes ($\mathbf{2 7 : 2 8}=\mathbf{7 2 : 2 8}, 167.4 \mathrm{mg}, 81 \%$). Analytic samples of pure 27 and 28 were obtained by repeated flash column chromatography. 27: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=$ 0.35 (20\% EtOAc-hexane); IR (neat) 1686, 1594, 1176, $1118 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.49(\mathrm{~s}, 1 \mathrm{H})$, 8.10-8.04 (AÁㅗ', 2 H), 7.35 (s, 1H), 6.98-6.92 (AA'BB',

2 H), 3.86 ($\mathrm{s}, 3 \mathrm{H}$), $3.43(\mathrm{t}, \mathrm{J}=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3$ $\mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.7, 162.0, 151.0, 132.3, 127.1, 120.9, 114.1, 102.1, 74.6, 72.1, 58.5, 55.4, 28.9, 25.2, 19.9; MS (+CI) m/z (relative intensity) 273 ($\mathrm{M}+\mathrm{H}^{+}, 100$); HRMS (+EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 272.1412$, found 272.1421. 28: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.43$ (20\% EtOAchexane); IR (neat) 1686, 1594, 1176, $1118 \mathrm{~cm}^{-1}$; 1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81$ (s, 1 H), 7.81 (s, 1 H), 7.327.26 (AA'BB', 2 H), 6.95-6.89 (AA'BB', 2 H), 3.84 (s, 3 $\mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=5.52 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, \mathrm{J}=$ $6.70 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 191.7,162.0,151.0,132.3,127.1,120.9,114.1$, 102.1, 74.6, 72.1, 58.5, 55.4, 28.9, 25.2, 19.9; MS (+CI) m / z (relative intensity) 273 ($\mathrm{M}+\mathrm{H}^{+}, 100$); HRMS (+EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$272.1412, found 272.1421.
(E)-11-Methoxy-5-(4'-methoxyphenyl)methylidene-1-(phenylthio)undeca-2,6-diyn-4-ol (29) and (Z)-11-Methoxy-5-(4'-methoxyphenyl)methylidene-1-(phen-ylthio)undeca-2,6-diyn-4-ol (30). To a solution of the above prepared mixture of aldehydes 27 and 28 (164.0 $\mathrm{mg}, 0.60 \mathrm{mmol})$ in dry THF (4 mL) cooled at $-78^{\circ} \mathrm{C}$ was added a THF (3 mL) solution of $\mathrm{PhSCH} \mathrm{C}_{2} \mathrm{C} \equiv \mathrm{CLi}$ prepared from phenyl propargyl sulfide ($182.3 \mathrm{mg}, 1.23 \mathrm{mmol}$) and n -BuLi (1.6 M in hexanes, $0.69 \mathrm{~mL}, 1.11 \mathrm{mmol}$). The reaction was stirred at the same temperature for 1 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The resultant mixture was extracted with EtOAc ($10 \times 2 \mathrm{~mL}$) and washed with brine (10 mL). The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 15\% EtOAchexane) to give 29 ($180.3 \mathrm{mg}, 71 \%$) and 30 ($18.2 \mathrm{mg}, 7 \%$). 29: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.18$ (20\% EtOAc-hexane); IR (neat) $3378,2216,1178,1114 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.80-7.73\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.18 (m, 3 H), 6.89-6.83 (AA'BB', 2 H$), 6.73(\mathrm{~s}, 1$ $\mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=6.21 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=$ $1.92 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=5.94 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, $2.55(\mathrm{~d}, \mathrm{~J}=7.38 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=6.45 \mathrm{~Hz}, 2 \mathrm{H})$, $1.78-1.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7$, 135.2, 133.3, 130.2, 130.1, 128.9, 128.4, 126.9, 119.6, 113.5, 98.9, 82.6, 82.3, 77.8, 72.1, 67.0, 58.5, 55.2, 28.8, 25.2, 23.1, 19.7; MS (+CI) m/z (relative intensity) 420 $\left(\mathrm{M}^{+}, 5\right), 403\left(\mathrm{M}^{+}-\mathrm{OH}, 100\right)$; HRMS (+EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right)$420.1759, found 420.1763. 30: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.20$ (20\% EtOAc-hexane); IR (neat) $3400,2220,1178,1114 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.55-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14$ (AA'BB', 2 H), 6.87-6.81 (AA'BB', 2 H), 6.80 (s, 1 H), $5.17(\mathrm{~d}, \mathrm{~J}=9.00 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=1.59$ $\mathrm{Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, \mathrm{J}=5.82 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}$, $\mathrm{J}=9.51 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=6.81 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.58$ (m, 4 H$)$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,135.2,130.4$, 130.3, 128.9, 127.8, 126.8, 123.6, 113.9, 93.1, 83.0, 81.4, $78.4,72.2,60.0,58.5,55.3,28.7,25.4,23.1,19.4 ; \mathrm{MS}(+\mathrm{CI})$ m / z (relative intensity) $420\left(\mathrm{M}^{+}, 54\right), 403\left(\mathrm{M}^{+}-\mathrm{OH}, 100\right)$.

Acid-Catalyzed Isomerization of 29 in the Presence of Nucleophiles. Typical Procedure. (E)-5-[1'-Ethoxy-1'-(4'-methoxyphenyl)]methyl-11-methoxy-1-(phenylthio)undeca-2,6-diyn-4-ene (31c). To a solution of alcohol 29 ($50.7 \mathrm{mg}, 0.12 \mathrm{mmol}$) and EtOH ($28 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ cooled in an ice-water bath ($0{ }^{\circ} \mathrm{C}$) was added CSA ($14.3 \mathrm{mg}, 0.06$ $\mathrm{mmol}, 0.03 \mathrm{M})$. The mixture was stirred for 7 h at the same temperature. The reaction mixture was diluted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue provided an inseparable mixture of 31c and 32c (31c:32c = 94:6, $48.4 \mathrm{mg}, 89 \%$; entry 5 in Table 3). The reaction conditions, yield, and product distribution are summarized in Table 3. 31c: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.57$ ($20 \% \mathrm{EtOAc}$ hexane); IR (neat) 2220, 2179, 1172, $1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.13(\mathrm{~m}, 5$ H), 6.83-6.74 (AA'BB', 2 H), 5.95 (dd, J $=3.27,1.14 \mathrm{~Hz}$, 1 H), 4.66 (s, 1 H), 3.78 (d, J $=2.22 \mathrm{~Hz}, 2 \mathrm{H}$), 3.74 (s, 3 H), 3.50-3.36 (m, 2 H), $3.28(\mathrm{t}, \mathrm{J}=6.15 \mathrm{~Hz}, 2 \mathrm{H}), 3.25$ $(\mathrm{s}, 3 \mathrm{H}), 2.28(\mathrm{t}, \mathrm{J}=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.47(\mathrm{~m}, 4 \mathrm{H})$, $1.16(\mathrm{t}, \mathrm{J}=7.05 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.2, 136.8, 132.1, 129.7, 128.9, 128.3, 127.6, 126.6, 113.6, 112.8, 99.4, 91.3, 82.9, 81.3, 78.0, 72.2, 64.5, 58.5, 55.2, 28.5, 25.1, 23.8, 19.5, 15.2; MS (+CI) m/z (relative intensity) 403 (M+ - EtO, 100); HRMS (+EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 448.2027$, found 448.2061 .
(E)-8-Methoxy-1-(4'-methoxyphenyl)-2-[4'-phenyl-thio(but-2'-ynylidene)]oct-3-yn-1-ol (31a). Pale yellow oil; $R_{f}=0.19$ (20\% EtOAc-hexane); IR (neat) 3402, 2220, $1174,1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.34$ (m, 2 H), 7.24-7.10 (m, 5 H), 6.82-6.74 (AA'BB', 2 H), $5.89(\mathrm{~d}, \mathrm{~J}=1.38 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=3.36 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{~d}, \mathrm{~J}=2.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=5.88$ Hz, 2 H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$), 2.27 (t, J $=6.69 \mathrm{~Hz}, 2 \mathrm{H}$), 1.611.44 (m, 4 H); MS (+CI) m/z (relative intensity) 421 (M $\left.+\mathrm{H}^{+}, 26\right), 403$ ($\mathrm{M}^{+}-\mathrm{OH}, 100$).
(E)-11-Methoxy-5-[1'-methoxy-1'-(4'-methoxyphen-yl)]methyl-1-(phenylthio)undeca-2,6-diyn-4-ene (31b). Obtained as the major component in an inseparable mixture (31b:32b $=94: 6$). 31b: pale yellow oil; $\mathrm{R}_{\mathrm{f}}=0.49$ (20\% EtOAc-hexane); IR (neat) 2229, $1172 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36$ (m, 2 H), 7.25-7.13 (m, 5 H), 6.80-6.74 (AA'BB', 2 H), $5.89(\mathrm{~d}, \mathrm{~J}=0.99 \mathrm{~Hz}$, 1 H), 4.51 ($\mathrm{s}, 1 \mathrm{H}$), $3.75(\mathrm{~d}, \mathrm{~J}=2.19 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3$ $\mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, \mathrm{J}=$ $6.78 \mathrm{~Hz}, 2 \mathrm{H}$), $1.65-1.45(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,136.3,131.6,129.8,128.9,128.3,127.5$, 126.6, 113.6, 113.1, 99.5, 91.4, 84.9, 81.3, 77.8, 72.2, 58.5, 56.8, 55.2, 28.5, 25.1, 23.9, 19.5; MS (+CI) m/z (relative intensity) 403 (M+ - MeO, 100); HRMS (+EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 434.1916$, found 434.1914 .
(E)-5-[1'-I sopropyloxy-1'-(4'-methoxyphenyl)]-methyl-11-methoxy-1-(phenylthio)undeca-2,6-diyn-4ene (31d). Obtained as the major component in an inseparable mixture (31d:32d = 82:18). 31d: pale yellow oil; $R_{f}=0.62$ (20\% EtOAc-hexane); IR (neat) 2220, 1172, $1120 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.46$ (m, 2 H), 7.35-7.23 (m, 5 H), 6.89-6.81 (AA'BB', 2 H), 6.02 $(\mathrm{d}, \mathrm{J}=1.35 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=2.19 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=6.12 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3$ H), 2.35 (t, J $=6.81 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.21$ $(\mathrm{d}, \mathrm{J}=6.12 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.09 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,137.4,132.5,129.7,128.9$, 128.4, 127.6, 126.5, 113.5, 112.7, 99.3, 91.2, 81.4, 80.1, 78.2, 72.2, 69.4, 59.5, 55.2, 28.5, 25.1, 23.8, 22.2, 22.1, 19.5; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $480\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 5), 403 (${ }^{+}$- i-PrO, 100); HRMS (+EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 462.2229$, found 462.2226 .
(E)-5-[1'-tert-B utyloxy-1'-(4'-methoxyphenyl)]-methyl-11-methoxy-1-(phenylthio)undeca-2,6-diyn-4ene (31e). Obtained as the major component in an inseparable mixture (31e:32e = 86:14). 31e: pale yellow oil; R_{f}
$=0.69$ (20\% EtOAc-hexane); IR (neat) 2222, 2179, 1172, $1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45$ (m, 2 H), 7.34-7.24 (m, 5 H), 6.87-6.81 (AA'BB', 2 H), 6.06 $(\mathrm{d}, \mathrm{J}=1.59 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=2.19 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{t}, \mathrm{J}=6.09 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3$ $\mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=6.81 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.20$ ($\mathrm{s}, 9 \mathrm{H}$); MS (+Cl) m/z (relative intensity) $494\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right.$, 4); $\mathrm{HRMS}(+\mathrm{EI})$ calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right) 476.2386$, found 476.2381.
(E)-5-[1'-Ethylthio-1'-(4'-methoxyphenyl)]methyl-11-methoxy-1-(phenylthio)undeca-2,6-diyn-4-ene(31f). Obtained as the major component in an inseparable mixture (31f:32f:33f $=78: 15: 7$). 31f: pale yellow oil; R_{f} $=0.46$ (20\% EtOAc-hexane); IR (neat) 2229, 1178, 1118 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.84\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H}\right), 5.95(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=2.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3$ $\mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.37$ (m, 4 H$), 1.70-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.35 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9,136.0,131.2,129.8$, 129.7, 129.3, 129.2, 128.9, 114.3, 113.7, 99.5, 91.4, 81.4, 78.5, 72.2, 58.5, 55.2, 54.1, 28.6, 26.1, 25.1, 23.8, 19.5, 14.2; $\mathrm{MS}(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $465\left(\mathrm{M}+\mathrm{H}^{+}, 19\right)$, 403 (M+ - EtS, 100); HRMS (+EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~S}$ (M^{+}- EtS) 403.1732, found 403.1690.
(E)-5-[1'-tert-Butylthio-1'-(4'-methoxyphenyl)]meth-yl-11-methoxy-1-(phenylthio)undeca-2,6-diyn-4-ene (31g). Obtained as the major component in an inseparable mixture (31g:32g:33g $=\mathbf{7 4 : 1 8 : 8}$). 31g: pale yellow oil; $R_{f}=0.53$ (20\%EtOAc-hexane); IR (neat) 2229, 1176, $1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.28$ (m, 5 H), 6.85-6.80 (AA'BB', 2 H), 6.00 ($\mathrm{s}, 1 \mathrm{H}$), 4.57 ($\mathrm{s}, 1 \mathrm{H}$), $3.84(\mathrm{~d}, \mathrm{~J}=2.10 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=6.18 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=$ $6.84 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,137.8,133.0,130.0,129.7$, 129.0, 128.8, 126.6, 114.1, 113.7, 99.3, 91.4, 81.5, 79.1, 72.2, 58.4, 55.2, 52.2, 44.5, 31.2, 28.6, 25.1, 23.9, 19.5; $\mathrm{MS}(+\mathrm{Cl}) \mathrm{m} / \mathrm{z}$ (relative intensity) $510\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 10\right)$, 403 (M+ - t-BuS, 100); HRMS (+EI) cal cd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}\right)$492.2157, found 492.2136.
(E)-11-Methoxy-5-[1'-phenylthio-1'-(4' ${ }^{\prime \prime}$ methoxy-phenyl)]methyl-1-(phenylthio)undeca-2,6-diyn-4ene (31h). Obtained as the major component in an inseparable mixture (31h:32h:33h:34h $=74: 8: 11: 7$). 31h: paleyellow oil; $\mathrm{R}_{\mathrm{f}}=0.45$ (20\% EtOAc-hexane); IR (neat) 2220, 1176, $1116 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}), 6.90-6.82$ (AA'BB', 2 H), $5.86(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=$ $2.16 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=6.06 \mathrm{~Hz}, 2 \mathrm{H})$, $3.33(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 4$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,135.4,134.7$, $131.9,131.3,130.2,129.4,128.9,128.7,128.5,127.0$, 126.6, 114.9, 113.8, 99.8, 91.6, 81.3, 78.6, 72.2, 58.5, 58.2, 55.2, 28.6, 25.1, 23.9, 19.6; MS (+CI) m/z (relative intensity) 513 ($\mathrm{M}+\mathrm{H}^{+}, 32$), $403\left(\mathrm{M}^{+}-\mathrm{PhS}, 100\right)$; HRMS (+EI) cal cd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right) 512.1844$, found 512.1855.

Acid-Catalyzed Isomerization of 30 in the Presence of Ethanol. To a solution of alcohol $30(50.7 \mathrm{mg}$, 0.12 mmol) and EtOH ($28 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added CSA ($14.3 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.03 \mathrm{M}$). The mixture was stirred for 90 h at room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatogra-
phy of the residue provided an inseparable mixture of 31c and 32c (31c:32c = 74:26, 17.2 mg , 32\%) together with a mixture of the dimeric ethers 35 ($16.5 \mathrm{mg}, 31 \%$). 35: pale yellow oil; IR (neat) 2220, 1176, $1116 \mathrm{~cm}^{-1}$; MS $(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $823\left(\mathrm{M}+\mathrm{H}^{+}, 1\right), 403$ (M^{+} - 419, 100).

Acid-Catalyzed Isomerization of 12 and 29 in the Presence of Methyl-d ${ }_{3}$ Alcohol-d. Typical Procedure. (E)-11-Methoxy-5-[1'-(trideuteriomethoxy)-1'-phenylmethy]-1-(phenylthio)undeca-2,6-diyn-4ene (39) and (E)-11-Methoxy-5-(phenylmethylidene)-1-phenylthio-4-(trideuteriomethoxyl)undeca-2,6diyne (40). To a sol ution of 12 ($55.5 \mathrm{mg}, 0.14 \mathrm{mmol}$) and $\mathrm{CD}_{3} \mathrm{OD}(11 \mu \mathrm{~L}, 0.27 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added CSA ($16.5 \mathrm{mg}, 0.07 \mathrm{mmol}, 46 \mathrm{mM}$). The mixture was stirred for 10.5 h at room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue (silica gel, 10\% EtOAc-hexane) provided 39 (40.7 $\mathrm{mg}, 70 \%$) and 40 ($5.0 \mathrm{mg}, 8.7 \%$). 39: colorless oil; $\mathrm{R}_{\mathrm{f}}=$ 0.65 (20\% EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.50-7.24 (m, 10 H$), 6.02$ ($\mathrm{s}, 1 \mathrm{H}$), 4.66 ($\mathrm{s}, 1 \mathrm{H}$), 3.85 (s, $2 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=$ $6.38 \mathrm{~Hz}, 2 \mathrm{H}$), $1.68-1.52(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.4,136.1,135.6,129.7,128.9,128.2,127.9$, 127.0, 126.6, 113.4, 99.6, 91.5, 85.3, 81.2, 77.7, 72.2, 58.5, 57.0, 28.5, 25.0, 23.8, 19.5; MS (+CI) m/z (relative intensity) $425\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100\right) .40$: colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.84(\mathrm{~d}, \mathrm{~J}=6.69 \mathrm{~Hz}), 7.36(\mathrm{~m}, 3 \mathrm{H})$, 6.87 ($\mathrm{s}, 1 \mathrm{H}$), $3.90(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=1.89 \mathrm{~Hz}, 2 \mathrm{H})$, $3.43(\mathrm{t}, \mathrm{J}=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=6.38$ Hz, 2 H), 1.66-1.29 (m, 4 H).
(E)-11-Methoxy-5-[1'-(trideuteriomethoxy)-1'-(4"-methoxyphenyl)methyl]-1-(phenylthio)undeca-2,6-diyn-4-ene (41). Obtained as the major component in an inseparable mixture (41:42 = 75:25). 41: pale yellow oil; $R_{f}=0.43$ (20\%EtOAc-hexane); IR (neat) 2202, 1172, $1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, \mathrm{~J}=7.33$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.88-6.83$ (AA'BB', 2 H), 5.97 (S, 1 H), $4.59(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t}, \mathrm{J}=5.86 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=6.83$ $\mathrm{Hz}, 2 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3$ 136.3, 131.6, 129.7, 128.9, 128.3, 127.5, 126.6, 113.8, 113.1, 99.5, 91.4, 84.8, 81.2, 77.8, 72.2, 58.5, 55.2, 28.6, 25.1, 23.8, 19.5; MS (+CI) m/z (relative intensity) 437 ($\mathrm{M}^{+}, 7$), 403 ($\mathrm{M}^{+}-\mathrm{OMe}_{3}, 100$).
(Z)-11-Methoxy-5-[1'-(trideuteriomethoxy)-1'-(4"-methoxyphenyl)methyl]-1-(phenylthio)undeca-2,6-diyn-4-ene (42). Obtained as the minor component in an inseparable mixture (41:42 = 75:25). 42: pale yellow oil; $R_{f}=0.43$ (20\% EtOAc-hexane); IR (neat) 2202, 1172, $1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, \mathrm{~J}=7.33$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.82-6.79$ (AA'BB', 2 H), $5.82(\mathrm{~S}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=1.95 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=5.86 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=6.83$ $\mathrm{Hz}, 2 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1$ 137.8, 1315.6, 134.9, 129.8, 129.0, 128.5, 126.9, $115.3,113.5,96.9,95.0,80.6,79.8,78.1,72.1,58.5,55.2$, 28.5, 25.0, 23.7, 19.4; MS (+CI) m/z (relative intensity) 437 (M+, 7), 403 ($\mathrm{M}^{+}-\mathrm{OMe}_{3}, 100$).

Oxidation of Allyl Alcohol 12. (E)-11-Methoxy-5-phenylmethylidene-1-(phenylthio)undeca-2,6-diyn-4-one (45a). To a solution of alcohol 12 ($0.597 \mathrm{~g}, 1.53$ mmol) and powdered $4 \AA$ molecular sieves in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(50 mL) cooled at $0^{\circ} \mathrm{C}$ in an ice-water bath was added PCC (495 mg, 2.30 mmol) followed by stirring at room temperature for 5 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and filtered through a short plug of silica gel with rinsing by $E t_{2} \mathrm{O}$. The combined organic layer was concentrated in vacuo, and the residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 45a ($300 \mathrm{mg}, 51 \%$): yellow oil; $\mathrm{R}_{\mathrm{f}}=0.26$ (20\% EtOAc-hexane); IR (neat) 2224, 1638, $1594,1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.93$ (m, 2 H$), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.22(\mathrm{~m}, 8 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H})$, $3.41(\mathrm{t}, \mathrm{J}=5.82 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=6.57$ $\mathrm{Hz}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8,147.9,134.2,134.1,131.1,130.7,130.6,129.2$, 128.5, 127.5, 122.6, 102.7, 91.2, 80.7, 75.3, 72.1. 58.5, 28.8, 25.0, 23.2, 19.9; MS (+CI) m/z (relative intensity) $389\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS (+FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~S}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 389.1575$, found 389.1506 .
Oxidation of Allyl Alcohol 18c. (E)-10-Methoxy-4-phenylmethylidene-1-phenyldeca-1,5-diyn-3-one (45b). To a solution of alcohol 18 c ($130 \mathrm{mg}, 0.38 \mathrm{mmol}$) in dry THF (5 mL) was added $\mathrm{MnO}_{2}(657 \mathrm{mg}, 5.67 \mathrm{mmol})$ followed by stirring at room temperature for 1 h . The reaction mixture was diluted with EtOAc (10 mL) and filtered through a short plug of silica gel with rinsing by EtOAc. The combined organic layer was concentrated in vacuo, and the residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 45b ($107 \mathrm{mg}, 83 \%$): yellow oil; $\mathrm{R}_{\mathrm{f}}=0.32$ (20% EtOAchexane); IR (neat) 2200, 1634, 1490, 1174, $1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12-8.10(\mathrm{~m}, 2 \mathrm{H}), 8.07$ (s, 1 H), 7.65-7.63 (m, 2 H), 7.48-7.39 (m, 6 H), 3.41 (t, $\mathrm{J}=6.34 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=6.83 \mathrm{~Hz}, 2$ $\mathrm{H}), 1.78-1.75(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 177.1, 146.9, 134.4, 132.9, 131.1, 130.7, 130.4, 128.6, 128.5, 122.7, 120.3, 102.5, 93.7, 86.7, 75.9, 72.1. 58.5, 28.9, 25.1, 19.9; MS (+CI) m/z (relative intensity) 343 (M $+\mathrm{H}^{+}, 100$).

Reduction of Ketones 45a,b. Typical Procedure. (-)-(E)-11-Methoxy-5-phenylmethylidene-1-(phen-ylthio)undeca-2,6-diyn-4-ol (12). To a solution of (+)-DIP-chloride ($331 \mathrm{mg}, 1.03 \mathrm{mmol}$) in dry Et $\mathrm{t}_{2} \mathrm{O}(2 \mathrm{~mL})$ cooled at $-20^{\circ} \mathrm{C}$ was added a solution of 45 a (334 mg , $0.86 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. The resultant mixture was stirred at the same temperature for 7.5 h . Excess acetaldehyde ($\sim 1.5 \mathrm{~mL}$) was then added to the reaction mixture, and stirring was continued for another 4 h at room temperature. The reaction was quenched with 2 N $\mathrm{NaOH}(20 \mathrm{~mL})$ and stirred for 3 h at room temperature. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \times 3$ mL). The organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue (silica gel, 30% EtOAc-hexane) provided (-)-12 (200 mg, 60\%): $[\alpha]^{20}{ }_{D}-27.6^{\circ}\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) ; 94.3 \%$ ee determined by HPLC over Chiralpak AD column eluted with hexane-2-propanol (95:5) at $1 \mathrm{~mL} / \mathrm{min}$ using UV detector at 254 $\mathrm{nm} ; \mathrm{t}_{\mathrm{R}}=32.5 \mathrm{~min}$ for $(-)-12$ and $\mathrm{t}_{\mathrm{R}}=26.3 \mathrm{~min}$ for the other enantiomer. The absolute stereochemistry of (-)12 is not determined.
(-)-(E)-10-Methoxy-4-phenylmethylidene-1-phen-yldeca-1,5-diyn-3-ol (18c). Obtained in 69\% yield from the (+)-DIP-chloride reduction of ketone 45b as described for 45a. 18c: $[\alpha]^{20_{D}}-16.4^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ; 94.4 \%$ ee determined by HPLC over Chiralpak AS column eluted with hexane-2-propanol (95:5) at $1 \mathrm{~mL} / \mathrm{min}$ using UV
detector at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=20.1 \mathrm{~min}$ for $(-)-18 \mathrm{c}$ and $\mathrm{t}_{\mathrm{R}}=$ 17.8 min for the other enantiomer. The absolute stereochemistry of $(-)-\mathbf{1 8 c}$ is not determined.
Acid-Catalyzed Isomerization of (-)-12 and (-)18c in the Presence of Ethanol or Ethanethiol. Typical Procedure. (E)-4-(1'-Ethylthio-1'-phenyl)-methyl-10-methoxy-1-phenyldeca-1,5-diyn-3-ene (46) and (E)-3-E thylthio-10-methoxy-4-phenylmeth-ylidene-1-phenyldeca-1,5-diyne (47). To a solution of (-)-18c (46 mg, 0.134 mmol) and EtSH ($20 \mu \mathrm{~L}, 0.27$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added CSA ($31 \mathrm{mg}, 13.4$ $\left.\times 10^{-2} \mathrm{mmol}, 67 \mathrm{mM}\right)$. The mixture was stirred at room temperaturefor 30 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography of the residue (silica gel, 20\% EtOAc-hexane) provided an inseparable mixture of 46 and 47 (46:47 = 69:31, $60 \mathrm{mg}, 60 \%$). 46: pale yellow oil; $R_{f}=0.49$ (20\% EtOAc-hexane); IR (neat) 2200, 1118 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.27(\mathrm{~m}, 10 \mathrm{H})$, $6.21(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{t}, \mathrm{J}=5.86 \mathrm{~Hz}, 2 \mathrm{H})$, 3.29 (s, 3H), $2.54(\mathrm{q}, \mathrm{J}=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=7.47$ $\mathrm{Hz}, 2 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.32 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,135.5,131.7,128.4$, 128.2, 127.5, 123.4, 114.8, 100.1, 95.6, 87.6, 78.7, 77.2, 72.1, 58.5, 54.9, 28.6, 26.2, 25.2, 19.6, 14.2; MS (+CI) m/z (relative intensity) 327 (M+ - EtS, 100); HRMS (+FAB) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{OS}\left(\mathrm{M}^{+}\right)$388.1861, found 388.1806. 47: paleyellow oil; $R_{f}=0.49$ (20\%EtOAc-hexane); IR (neat) 2200, $1118 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (d, J $=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.27(\mathrm{~m}, 8 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.58$ ($\mathrm{s}, 1 \mathrm{H}$), $3.40(\mathrm{t}, \mathrm{J}=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.88-$ $2.65(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, \mathrm{J}=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.61(\mathrm{~m}$, $4 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.35 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.0, 134.5, 131.6, 128.4, 128.3, 127.7, 123.0, 116.0, 101.0, 97.0, 86.9, 79.0, 74.0, 72.0, 64.3, 47.0, 41.8, 28.5, 25.1, 19.5, 14.4; MS (+CI) m/z (relative intensity) 327 (M^{+} - EtS, 100).

Table 6 summaries the results of reactions of chiral alcohols (-)-12 and (-)-18c with EtOH and EtSH. The products 16b,d, 17b,d, 19c, 46, and $\mathbf{4 7}$ given in Table 6 were proved to be racemic mixtures as analyzed by HPLC using chiral columns as specified below.

For compound 16b: two Chiralpak AD columns eluted with hexane-2-propanol (99:1) at $0.6 \mathrm{~mL} / \mathrm{min}$ using UV detector at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=24.1$ and 29.5 min for the two enantiomers.

For compound 17b: two Chiralcel OD columns eluted with hexane-2-propanol (99:1) at $1 \mathrm{~mL} / \mathrm{min}$ using UV detector at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=24.1$ and 25.1 min for the two enantiomers.

For compounds 16d and 17d: two Chiralpak AD columns eluted with hexane-2-propanol (99:1) at $0.8 \mathrm{~mL} /$ min using UV detector at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=39.2$ and 42.5 min for the two enantiomers of 17d. Chiralcel OD column eluted with hexane-2-propanol (99:1) at $1 \mathrm{~mL} / \mathrm{min}$ using UV detector at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=12.7$ and 17.1 min for the two enantiomers of 16d.

For compound 19c: Chiralpak AD column eluted with hexane-2-propanol (95:5) at $1 \mathrm{~mL} / \mathrm{min}$ using UV detector at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=4.5$ and 6.4 min for the two enantiomers.

For compounds 46 and 47: two Chiralpak AD columns eluted with hexane-2-propanol (99:1) at $0.6 \mathrm{~mL} / \mathrm{min}$ using UV detector at $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=23.8$ and 24.6 min for
the two enantiomers of 47; $\mathrm{t}_{\mathrm{R}}=27.4$ and 35.3 min for the two enantiomers of 46 .

Kinetic Measurement. Conversion of $\mathbf{1 2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in the presence of 1.0 equiv of CSA at $20^{\circ} \mathrm{C}$ was monitored by ${ }^{1} \mathrm{H}$ NMR on a 400 MHz instrument. The relative integration values for compounds $\mathbf{1 2}$ (at 5.0 ppm), $\mathbf{1 3}$ (at 5.2 ppm), and the mixture of 14 and $\mathbf{1 5}$ (at 4.8 ppm) in the ${ }^{1} \mathrm{H}$ NMR spectrum were recorded at the specified reaction time and were plotted against the time shown in Figure 1.

Conversion of alcohols $\mathbf{1 2}$ and 29 in $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$ ($1: 1 \mathrm{v} / \mathrm{v}$) in the presence of CSA at the indicated temperature was monitored by ${ }^{1} \mathrm{H}$ NMR on a 400 MHz instrument. M ethyl 3,5-dinitrobenzoate was used as the internal reference compound. At the given temperature and CSA concentration, the rel ative integration values of the substrate (at ca. 6.80 ppm for both 12 and 29) to methyl 3,5-dinitrobenzoate (at 9.10 ppm) in the ${ }^{1} \mathrm{H}$ NMR spectrum were recorded at the specified reaction time. These data were used to construct the plots shown in Figures 4 and 5. The rate constants and half-lives were calculated from the slopes of the plots in Figures 4 and 5 and listed in Tables 4 and 5. Activation energies were estimated from the Arrhenius equation by the plot of In k versus $1 / T$ for both 12 and 29.

Computational Calculations. The ab initio molecular orbit calculations were performed using the Gaussian 94^{39} sets of programs. The geometries of the examined structures were optimized at the RHF/3-21G level of theory. Table 7 and Figures 6 and 7 list the total energies and geometries of the most stable conformations of 54a-
f, 55a-f, and 56-59. Calculation results for 54g and other less stable conformations are found in the Supporting Information. Substituent effect ($\Delta \Delta \mathrm{E}=\Delta \mathrm{E}_{\text {ref }}-$ $\Delta \mathrm{E}_{\text {subst }}$) on the stability of allylic cations 57-59 are obtained by the difference in the energy gap ($\Delta \mathrm{E}_{\text {subst }}$) between the cations 57-59 and the most stable conformation of the allylic alcohols 54b-d, respectively, compared to that ($\Delta \mathrm{E}_{\text {ref }}$) of 56 and 54a. The data are given in Figure 7.

Acknowledgment. This work was supported by the UGC Competitive Earmarked Research Grants [HKUST212/93E and HKUST590/95P] from the Research Grants Council of the Hong Kong Special Administrative Region, China. Financial support from the Department of Chemistry, HKUST is also acknowledged.

Supporting Information Available: Z-Matrixes and total energies for 54a-g, 55a-f, 56-59, and related species and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products. This material is available free of charge via the Internet at http://pubs.acs.org.
J O982476V

[^9]
[^0]: * To whom correspondence should be addressed. Phone: (852) 2358 7365. Fax: (852) 2358 1594. E-mail: chdai@ust.hk.
 ${ }^{\dagger}$ As a result of attachment of the oxygenated substituent $(\mathrm{Y}=\mathrm{OH}$, OR) at the allylic carbon of enediynes 2, the trisubstituted olefins possess the E configuration. To be consistent with the nomenclature of disubstituted enediynes, we use cis and trans designations in the text. The cis-enediynes have the alkynyl groups on the same side of the double bond.
 (1) Selected reviews on chemistry and biology of enediynes, see: (a) Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387. (b) Goldberg, I. H. Acc. Chem. Res. 1991, 24, 191. (c) Lee, M. D.; Ellestad, G. A.; Borders, D. B. Acc. Chem. Res. 1991, 24, 235. (d) Nicolaou, K. C.; Smith, A. L. Acc. Chem. Res. 1992, 25, 497. (e) Nicolaou, K. C.; Smith, A. L.; Yue, E. W. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5881. (f) Nicolaou, K. C.; Smith, A. L. In M odern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, 1995; pp 203-283. (g) Lhermitte, H.; Grierson, D. S. Comtemp. Org. Synth. 1996, 3,41 and 93. (h) Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. Tetrahedron 1996, 52, 6453.
 (2) (a) Enediynes Antibiotics as Antitumor Agents; Doyle, T. W., Borders, D. B., Eds.; Marcel Dekker: New York, 1994. (b) DNA and RNA Cleavers and Chemotherapy of Cancer and Viral Diseases; Meunier, B., Ed.; Kluwer Academic Publishers: Dordrecht, 1996; pp 1-73.

[^1]: (9) Structure of C-1027 chromophore, see: Y oshida, K.; Minami, Y.; Azuma, R.; Sakei, M.; Otani, T. Tetrahedron Lett. 1993, 34, 2637. Iida, K.; Ishii, T.; Hirama, M.; Otani, T.; Minami, Y.; Yoshida, K. Tetrahe dron Lett. 1993, 34, 4079. Iida, K.; Fukuda, S.; Tanaka, T.; Hirama, M.; Imajo, S.; Ishiguro, M.; Y oshida, K.; Otani, T. Tetrahedron Lett. 1996, 37, 4997.
 (10) Structure of maduropeptin chromophore, see: Schroeder, D. R.; Colson, K. L.; Klohr, S. E.; Zein, N.; Langley, D. R.; Lee, M. S.; Matson, J. A.; Doyle, T. W. J. Am. Chem. Soc. 1994, 116, 9351.
 (11) Structure of N1999A2, see: Ando, T.; Ishii, M.; Kajiura, T.; Kameyama, T.; Miwa, K.; Sugiura, Y. Tetrahedron Lett. 1998, 39, 6495.
 (12) (a) J ones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660. (b) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25. (c) Lockhart, T. P.; Commita, P. B.; Bergman, R. G. J . Am. Chem. Soc. 1981, 103, 4082. (d) Lockhart, T. P.; Commita, P. B.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4091. (e) Darby, N.; Kim, C. V.; Salaun, J. A.; Shelton, K. W.; Takada, S.; Masamune, S. J . Chem. Soc., Chem. Commun. 1971, 1516. (f) Wong, H. N. C.; Sondheimer, F. Tetrahedron Lett. 1980, 21, 217.
 (13) (a) Murphy, J. A.; Griffiths, J. Nat. Prod. Rep. 1993, 551. (b) Pratviel, G. P.; Bernadou, J.; Meunier, B. Angew. Chem., Int. Ed. Engl. 1995, 34, 746. (c) Pogozelski, W. K.; Tullius, T. D. Chem. Rev. 1998, 98, 1089.
 (14) Recent Progress in the Chemistry of Enediyne Antibiotics; Tetrahedron Symposia-in-print No. 53; Doyle, T. W., Kadow, J. F., Eds.; Tetrahedron 1994, 50, No. 5.
 (15) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467. (b) Sonogashira, K. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds., Pergamon Press: New York, 1991; Vol. 3, pp 521-549.
 (16) (a) Stille, J. K. Pure Appl. Chem. 1985, 57, 1771. (b) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (c) Mitchell, T. N. Synthesis 1992, 803.
 (17) (a) Shair, M. D.; Y oon, T.; Danishefsky, S. J. J. Org. Chem. 1994, 59, 3755. (b) Shair, M. D.; Y oon, T.; Chou, T.-C.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 2477. (c) Shair, M. D.; Yoon, T.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1721. (d) Shair, M. D.; Yoon, T. Y.; Mosny, K. K.; Chou, T. C.; Danishefsky, S. J. J. Am. Chem. Soc. 1996, 118, 9509. (e) Takahashi, T.; Sakamoto, Y.; Yanada, H.; Usui, S.; Fukazawa, Y. Angew. Chem., Int. Ed. Engl. 1995, 34, 1345. (f) Tanaka, H.; Yamada, H.; Matsuda, A.; Takahashi, T. Synlett 1997, 381. (g) Clive, D. L. J .; Bo, Y.; Tao, Y.; Daigneault, S.; Wu, Y.-J.; Meignan, G. J. Am. Chem. Soc. 1996, 118, 4904. (h) Nantz, M. H.; M oss, D. K.; Spence, J . D.; Olmstead, M. M. Angew. Chem., Int. Ed. Engl. 1998, 37, 470.
 (18) Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1992, 114, 5859.
 (19) (a) Petasis, N. A.; Teets, K. A. Tetrahedron Lett. 1993, 34, 805. (b) Y oshimatsu, M.; Yamada, H.; Shimizu, H.; Kataoka, T. J . Chem. Soc., Chem. Commun. 1994, 2107.

[^2]: (29) Lütjens, H.; Nowotny, S.; K nochel, P. Tetrahedron: Asymmetry 1995, 6, 2675.

[^3]: (30) K owalski, C. J .; Weber, A. E.; Fields, K. W. J . Org. Chem. 1982, 47, 5088.

[^4]: (31) (Z)- and (E)-3-(p-M ethoxyphenyl)-2-bromo-propenoate, see: Le Menn, J.-C.; Saarrazin, J.; Tallec, A. Can. J. Chem. 1989, 67, 1332. Assignment of the (Z) and (E) isomers seems not correct.

[^5]: (32) (a) Pocker, Y.; Hill, M. J. J . Am. Chem. Soc. 1969, 91, 3243. (b) Pocker, Y.; Hill, M. J. J. Am. Chem. Soc. 1971, 93, 691.
 (33) I somerization barrier for allylic cations, see: Bollinger, J. M.; Brinich, J. M.; Olah, G. A. J. Am. Chem. Soc. 1970, 92, 4025.
 (34) Izawa, K.; Okuyama, T.; Sakagami, T.; Fueno, T. J . Am. Chem. Soc. 1973, 95, 6752.

[^6]: (35) An ion-neutral complex was proposed for intramolecular racemization and regioisomerization of chiral allyl alcohol in the gas phase, see: (a) Troiani, A.; Gasparrini, F.; Graninetti, F.; Speranza, M. J . Am. Chem. Soc. 1997, 119, 4525. (b) Troiani, A.; Speranza, M. J. Org. Chem. 1998, 63, 1012. (c) Speranza, M.; Troiani, A. J . Org. Chem. 1998, 63, 1020.
 (36) Brown, H. C.; Ramachandran, P. V. Acc. Chem. Res. 1992, 25, 16. Brown, H. C.; Ramachandran, P. V. Pure Appl. Chem. 1994, 66, 201. Brown, H. C.; Ramachandran, P. V. Organomet. Chem. 1995, 500, 1. Dhar, R. K. Aldrichimica Acta 1994, 27, 43.

[^7]: (37) Ramachandran, P. V.; Teodorovic, A. V.; Rangaishenvi, M. V.; Brown, H. C. J. Org. Chem. 1992, 57, 2379.

[^8]: (38) Dai, W.-M.; F ong, K. C.; Lau, C. W.; Zhou, L.; Hamahuchi, W.; Nishimoto, S. J. Org. Chem. 1999, 64, 682.

[^9]: (39) Gaussian 94, Revision D. 3; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill,'P. M. W.; J ohnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; M ontgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; F oresman, J . B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J .; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Pittsburgh, PA, 1995.

